Cargando…

The Properties of Gases and Liquids, Sixth Edition /

Fully updated for the latest advances, this must-have chemical engineering guide serves as a single source for up-to-date physical data, chemical data, and predictive and estimation methods. The Properties of Gases and Liquids, Sixth Edition provides the latest curated data on over 480 compounds and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Elliott, J.Richard (Autor), Diky, Vladimir (Autor), Knotts, Thomas A. (Autor), Wilding, W.Vincent (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw Hill LLC, [2023]
Edición:Sixth edition.
Colección:McGraw-Hill's AccessEngineeringLibrary.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Foreword
  • Preface
  • 1 Introduction
  • 1.1 Scope
  • 1.2 Estimation of Physical Properties
  • 1.3 Traditional Estimation Methods
  • 1.4 Nontraditional Estimation Methods
  • 1.5 Database Development and Method Evaluation
  • 1.6 Organization of the Book
  • 1.7 References
  • 2 Uncertainty
  • 2.1 Scope
  • 2.2 Introduction: Why Are Uncertainties Important?
  • 2.3 Historical Background
  • 2.4 Key Documents: The GUM, NIST 1297, and VIM
  • 2.5 Uncertainty Assessment for Thermophysical Properties: The GUM Approach
  • 2.6 The Uncertainty Budget
  • 2.7 Reference Materials and Standard Reference Materials
  • 2.8 Challenges for the User of Experimental Data from the Literature
  • 2.9 Examples of Common Problems in Articles Reporting Thermophysical Properties
  • 2.10 Modern Uncertainty Assessment Procedures (Critical Evaluation)
  • 2.11 Summary
  • 2.12 Disclaimer
  • 2.13 References
  • 3 Pure-Component Constants
  • 3.1 Scope
  • 3.2 Vapor-Liquid Critical Properties
  • 3.3 Acentric Factor
  • 3.4 Melting and Boiling Points
  • 3.5 Discussion of Estimation Methods for Pure Component Constants
  • 3.6 Dipole Moments
  • 3.7 Availability of Data and Computer Programs
  • 3.8 Notation
  • 3.9 References
  • 4 Thermodynamic Properties of Ideal Gases
  • 4.1 Scope and Definitions
  • 4.2 Estimation Methods for the Ideal Gas Standard State
  • 4.3 Method of Benson
  • 4.4 Method of Domalski and Hearing
  • 4.5 Modified Joback Method for Ideal Gas Heat Capacity
  • 4.6 Quantum Mechanical Methods
  • 4.7 Standard State Enthalpy of Formation and Enthalpy of Combustion
  • 4.8 Discussion and Recommendations
  • 4.9 Notation
  • 4.10 References
  • 5 Pure Fluid Thermodynamic Properties of the Single Variable Temperature
  • 5.1 Scope
  • 5.2 Saturated Liquid Density
  • 5.3 Theory of Liquid Vapor Pressure and Enthalpy of Vaporization
  • 5.4 Theory of Liquid Heat Capacity
  • 5.5 Correlating Vapor-Pressure, Enthalpy of Vaporization, and Liquid Heat Capacity Data
  • 5.6 Reliable Extrapolation of Vapor Pressure and Thermodynamic Consistency between Vapor Pressure, Enthalpy of Vaporization, and Liquid Heat Capacity
  • 5.7 Prediction of Vapor Pressure
  • 5.8 Extrapolation and Prediction of Enthalpy of Vaporization of Pure Compounds and Recommendations
  • 5.9 Prediction of Liquid Heat Capacity
  • 5.10 Discussion and Recommendations for Vapor-Pressure, Enthalpy of Vaporization, and Liquid Heat Capacity Estimation and Correlation
  • 5.11 Enthalpy of Melting
  • 5.12 Enthalpy of Sublimation
  • 5.13 Solid Vapor Pressure (Sublimation Pressure)
  • 5.14 Correlation and Estimation of Virial Coefficients
  • 5.15 Notation
  • 5.16 References
  • 6 Thermodynamic Properties of Pure Gases and Liquids
  • 6.1 Scope
  • 6.2 Introduction to Equations of State
  • 6.3 Theory of Equations of State
  • 6.4 Fundamental Thermodynamic Relationships for Pure Compounds
  • 6.5 Virial Equations of State
  • 6.6 Cubic Equations of State
  • 6.7 Multiparameter Equations of State
  • 6.8 Perturbation Models with Customized Parameters
  • 6.9 Perturbation Models with Transferable Parameters
  • 6.10 Chemical Theory EOSs
  • 6.11 Molecular Simulation Models
  • 6.12 Residual Functions for Evaluated Models
  • 6.13 Evaluations of Equations of State
  • 6.14 Notation
  • 6.15 References
  • 7 Thermodynamic Properties of Mixtures
  • 7.1 Scope
  • 7.2 Mixture Properties?General Discussion
  • 7.3 Theory of Mixture Modeling
  • 7.4 Perturbation Models
  • 7.5 Excess Gibbs Energy Mixing Rules
  • 7.6 Mixing Rules for Multiparameter EOS
  • 7.7 Virial Equations of State for Mixtures
  • 7.8 Residual Functions for Evaluated Models
  • 7.9 Empirical Correlations for Mixture Properties
  • 7.10 Evaluations and Recommendations
  • 7.11 Notation
  • 7.12 References
  • 8 Vapor-Liquid Equilibria in Mixtures
  • 8.1 Scope
  • 8.2 A Note about the Modeling of Temperature Effects
  • 8.3 Thermodynamics of Vapor-Liquid Equilibria
  • 8.4 Fugacity of a Pure Liquid
  • 8.5 Simplifications in the Vapor-Liquid Equilibrium Relation
  • 8.6 Activity Coefficients; Gibbs-Duhem Equation, and Excess Gibbs Energy
  • 8.7 Theory of Activity Models
  • 8.8 Correlating Low-Pressure Binary Vapor-Liquid Equilibria
  • 8.9 Effect of Temperature on Low-Pressure Vapor-Liquid Equilibria
  • 8.10 Multicomponent Vapor-Liquid Equilibria at Low Pressure
  • 8.11 Predicting Activity Coefficients
  • 8.12 Phase Equilibrium with Henry's Law
  • 8.13 Vapor-Liquid Equilibria with Equations of State
  • 8.14 Evaluations
  • 8.15 Concluding Remarks
  • 8.16 Acronyms
  • 8.17 Notation
  • 8.18 References
  • 9 Specialized Phase Behavior in Mixtures
  • 9.1 Scope
  • 9.2 Infinite Dilution Activity Coefficients
  • 9.3 Liquid-Liquid Equilibria
  • 9.4 Solubilities of Solids in Liquids
  • 9.5 Evaluations
  • 9.6 Concluding Remarks
  • 9.7 Notation New to Chapter 9
  • 9.8 References
  • 10 Viscosity
  • 10.1 Scope
  • 10.2 Definitions of Units of Viscosity
  • 10.3 Theory of Gas Transport Properties
  • 10.4 Estimation of Low-Pressure Gas Viscosity
  • 10.5 Viscosities of Gas Mixtures at Low Pressures
  • 10.6 Effect of Pressure on the Viscosity of Pure Gases
  • 10.7 Viscosity of Gas Mixtures at High Pressures
  • 10.8 Liquid Viscosity
  • 10.9 Effect of High Pressure on Liquid Viscosity
  • 10.10 Effect of Temperature on Liquid Viscosity
  • 10.11 Estimation of Low-Temperature Liquid Viscosity
  • 10.12 Estimation of Liquid Viscosity at High Temperatures
  • 10.13 Liquid Mixture Viscosity
  • 10.14 Notation
  • 10.15 References
  • 11 Thermal Conductivity
  • 11.1 Scope
  • 11.2 Theory of Thermal Conductivity
  • 11.3 Thermal Conductivities of Polyatomic Gases
  • 11.4 Effect of Temperature on the Low-Pressure Thermal Conductivities of Gases
  • 11.5 Effect of Pressure on the Thermal Conductivities of Gases
  • 11.6 Thermal Conductivities of Low-Pressure Gas Mixtures
  • 11.7 Thermal Conductivities of Gas Mixtures at High Pressures
  • 11.8 Thermal Conductivities of Liquids
  • 11.9 Estimation of the Thermal Conductivities of Pure Liquids
  • 11.10 Effect of Temperature on the Thermal Conductivities of Liquids
  • 11.11 Effect of Pressure on the Thermal Conductivities of Liquids
  • 11.12 Thermal Conductivities of Liquid Mixtures
  • 11.13 Notation
  • 11.14 References
  • 12 Diffusion
  • 12.1 Scope
  • 12.2 Basic Concepts and Definitions
  • 12.3 Progress in Self-Diffusivity Correlation
  • 12.4 Diffusion Coefficients for Binary Gas Systems at Low Pressures: Prediction from Theory
  • 12.5 Diffusion Coefficients for Binary Gas Systems at Low Pressures: Empirical Correlations
  • 12.6 The Effect of Pressure on the Binary Diffusion Coefficients of Gases
  • 12.7 The Effect of Temperature on Diffusion in Gases
  • 12.8 Diffusion in Multicomponent Gas Mixtures
  • 12.9 Diffusion in Liquids: Theory
  • 12.10 Estimation of Binary Liquid Diffusion Coefficients at Infinite Dilution
  • 12.11 Concentration Dependence of Binary Liquid Diffusion Coefficients
  • 12.12 The Effects of Temperature and Pressure on Diffusion in Liquids
  • 12.13 Diffusion in Multicomponent Liquid Mixtures
  • 12.14 Diffusion in Electrolyte Solutions
  • 12.15 Notation
  • 12.16 References
  • 13 Surface Tension
  • 13.1 Scope
  • 13.2 Introduction
  • 13.3 Estimation of Pure-Liquid Surface Tension
  • 13.4 Temperature Dependence of Pure-Liquid Surface Tension
  • 13.5 Surface Tensions of Mixtures
  • 13.6 Notation
  • 13.7 References
  • Appendix A Property Data Bank
  • Appendix B Lennard-Jones Potentials as Determined from Viscosity Data
  • Index.