Cargando…

A Working Guide to Process Equipment, Fifth Edition /

A practical and accessible reference book for process industry professionals and students seeking the latest methods for troubleshooting and maintaining process equipment.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lieberman, Norman P. (Autor), Lieberman, Elizabeth T. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw Hill LLC, [2022]
Edición:Fifth edition.
Colección:McGraw-Hill's AccessEngineeringLibrary.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 MGH_AEACE22062201
003 IN-ChSCO
005 20220622104733.0
006 m|||||||||||||||||
007 cr |n||||||||n
008 220622s2022||||nyu|||||o|||||||||||eng||
010 |z  2021021159 
020 |a 9781260461671 (e-ISBN) 
020 |a 126046167X (e-ISBN) 
020 |z 9781260461664 (print-ISBN) 
020 |z 1260461661 (print-ISBN) 
035 |z (OCoLC)1196199400 
040 |a IN-ChSCO  |b eng  |e rda 
041 0 |a eng 
050 4 |a TP157 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 4 |a 660  |2 23 
100 1 |a Lieberman, Norman P.,  |e author. 
245 1 2 |a A Working Guide to Process Equipment, Fifth Edition /  |c Norman P. Lieberman, Elizabeth T. Lieberman. 
250 |a Fifth edition. 
264 1 |a New York, N.Y. :  |b McGraw Hill LLC,  |c [2022] 
264 4 |c ?2022 
300 |a 1 online resource (749 pages) :  |b illustrations. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a McGraw-Hill's AccessEngineeringLibrary 
504 |a Includes bibliographical references and index. 
505 0 |a Cover -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface to the Fifth Edition -- Preface to the First Edition -- Introduction -- Acknowledgments -- 1 Process Equipment Fundamentals -- 1.1 Frictional Losses -- 1.2 Density Difference Induces Flow -- 1.3 Natural Thermosyphon Circulation -- 1.4 Reducing Hydrocarbon Partial Pressure -- 1.5 Corrosion at Home -- 1.6 What I Know -- 1.7 Distillation: The First Application -- 1.8 Origin of Reflux -- 1.9 Glossary -- 2 Basic Terms and Conditions -- 3 How Trays Work: Flooding -- 3.1 Tray Types -- 3.2 Tray Efficiency -- 3.3 Downcomer Backup -- 3.4 Downcomer Clearance -- 3.5 Vapor-Flow Pressure Drop -- 3.6 Jet Flood -- 3.7 Incipient Flood -- 3.8 Tower Pressure Drop and Flooding -- 3.9 Optimizing Feed Tray Location -- 3.10 Catacarb CO2 Absorber Flooding -- 4 How Trays Work: Dumping Weeping through Tray Decks -- 4.1 Tray Pressure Drop -- 4.2 Other Causes of Tray Inefficiency -- 4.3 Bubble-Cap Trays -- 4.4 New High Capacity Trays -- 4.5 Calculating Tray Efficiency -- 5 Notes on Tray Design Details -- 5.1 Process Design Equipment Details -- 6 Why Control Tower Pressure Options for Optimizing Tower Operating Pressure -- 6.1 Selecting an Optimum Tower Pressure -- 6.2 Raising the Tower Pressure Target -- 6.3 Lowering the Tower Pressure -- 6.4 The Phase Rule in Distillation -- 7 What Drives Distillation Towers Reboiler Function -- 7.1 The Reboiler -- 7.2 Heat-Balance Calculations -- 8 How Reboilers Work Thermosyphon, Gravity Feed, and Forced -- 8.1 Thermosyphon Reboilers -- 8.2 Forced-Circulation Reboilers -- 8.3 Kettle Reboilers -- 8.4 Don?t Forget Fouling -- 8.5 Vapor Binding in Steam Reboilers -- 9 Inspecting Tower Internals -- 9.1 Tray Deck Levelness -- 9.2 Loss of Downcomer Seal Due to Leaks -- 9.3 Effect of Missing Caps -- 9.4 Repairing Loose Tray Panels -- 9.5 Improper Downcomer Clearance -- 9.6 Inlet Weirs -- 9.7 Seal Pans -- 9.8 Drain Holes -- 9.9 Vortex Breakers -- 9.10 Chimney Tray Leakage -- 9.11 Shear Clips -- 9.12 Bubble-Cap Trays -- 9.13 Final Inspection -- 9.14 Conclusion -- Reference -- 10 How Instruments Work Levels, Pressures, Flows, and Temperatures -- 10.1 Level -- 10.2 Foam Affects Levels -- 10.3 Pressure -- 10.4 Flow -- 10.5 Temperature -- Reference. 
505 0 |a 11 Packed Towers: Better Than Trays? Packed-Bed Vapor and Liquid Distribution -- 11.1 How Packed Towers Work -- 11.2 Maintaining Functional and Structural Efficiency in Packed Towers -- 11.3 Advantages of Packing vs. Trays -- Reference -- 12 Distillation Process Engineering Design Errors -- 12.1 Sour Water Stripper Inefficient Reboiler Balance Line -- 12.2 Elevating Overhead Condenser -- 12.3 Distillation Tray Assembly -- 12.4 Sour Water Stripper Design -- 12.5 Vertical Baffle in Tower Bottoms -- 12.6 Chimney Tray Overflow Pipe -- 12.7 Raffinate Splitter Explosion Texas City -- 12.8 Crude Tower Top P/A -- 12.9 Excessive Thermosyphon Circulation -- 12.10 Tray Hydraulics -- 12.11 Crude Tower Bottom Stripping Tray Retrofit -- 12.12 Vacuum Tower Flash Zone Pressure -- 12.13 Level Tap Location -- 12.14 Crude Tower Overhead -- 12.15 Using High Pressure Steam in an FCU Gasoline Splitter Reboiler -- 12.16 Vacuum Tower Overhead Surface Condenser -- 13 Steam and Condensate Systems Water Hammer and Condensate Backup Steam-Side Reboiler Control -- 13.1 Steam Reboilers -- 13.2 Condensing Heat-Transfer Rates -- 13.3 Maintaining System Efficiency -- 13.4 Carbonic Acid Corrosion -- 13.5 Condensate Collection Systems -- 13.6 Deaerators -- 13.7 Surface Condensers -- 14 Vapor Lock and Exchanger Flooding in Steam Systems -- 14.1 Function of the Steam Trap -- 14.2 Non-Condensable Venting -- 14.3 Corrosive Steam -- 14.4 Condensate Drum -- 14.5 Condensate Drainage and Vapor Lock -- 14.6 Elevated Condensate Collection Drum -- 14.7 Conclusion -- 15 Bubble Point and Dew Point Equilibrium Concepts in Vapor-Liquid Mixtures -- 15.1 Bubble Point -- 15.2 Dew Point -- Reference -- 16 Steam Strippers Source of Latent Heat of Vaporization -- 16.1 Heat of Evaporation -- 16.2 Stripper Efficiency -- References -- 17 Draw-Off Nozzle Hydraulics Nozzle Cavitation Due to Lack of Hydrostatic Head -- 17.1 Nozzle Exit Loss -- 17.2 Critical Flow -- 17.3 Maintaining Nozzle Efficiency -- 17.4 Overcoming Nozzle Exit Loss Limits -- Reference -- 18 Pumparounds and Tower Heat Flows Closing the Tower Enthalpy Balance -- 18.1 The Pumparound -- 18.2 Vapor Flow -- 18.3 Fractionation -- Reference -- 19 Condensers and Tower Pressure Control Hot-Vapor Bypass: Flooded Condenser Control -- 19.1 Subcooling, Vapor Binding, and Condensation -- 19.2 Pressure Control -- Reference -- 20 Air Coolers Fin-Fan Coolers -- 20.1 Fin Fouling -- 20.2 Fan Discharge Pressure -- 20.3 Effect of Reduced Air Flow -- 20.4 Adjustments and Corrections to Improve Cooling -- 20.5 Designing for Efficiency. 
505 0 |a 21 Thermodynamics How It Applies to Process Equipment -- 21.1 Why Is Thermodynamics Important to the Plant Operator? -- 21.2 The Source of Steam Velocity -- 21.3 Converting Latent Heat to Velocity -- 21.4 Effect of Wet Steam -- 21.5 Steam Ejector Temperature Profile -- 21.6 Roto-Flow Turbo Expander -- 21.7 The Meaning of Entropy -- 22 Steam Generation, Deaerators, Steam Systems, and BFW Preparation -- 22.1 Boiler Feedwater -- 22.2 Boiler Feedwater Preparation -- 22.3 Boiler Feedwater Preheat -- 22.4 Boilers -- 22.5 Waste-Heat Boilers -- 22.6 Superheating Steam -- References -- 23 Vacuum Systems: Steam Jet Ejectors -- 23.1 Theory of Operation -- 23.2 Converging and Diverging Compression -- 23.3 Calculations, Performance Curves, and Other Measurements in Jet Systems -- 23.4 Optimum Vacuum Tower-Top Temperature -- 23.5 Measurement of a Deep Vacuum without Mercury -- Reference -- 24 Steam Turbines Use of Horsepower Valves and Correct Speed Control -- 24.1 Principle of Operation and Calculations -- 24.2 Selecting Optimum Turbine Speed -- 24.3 Reciprocating Steam Engines -- 25 Effect of Liquid Water in Steam -- 25.1 Determining the Causes of Wet Steam -- 25.2 Consequences of Wet Steam -- 25.3 Causes of Wet Steam -- 25.4 Boiler Level Control -- 25.5 Effects of Wet Steam -- 25.6 Steam Stripping -- 26 Surface Condensers The Condensing Steam Turbine -- 26.1 The Second Law of Thermodynamics -- 26.2 Surface Condenser Problems -- 26.3 Surface Condenser Heat-Transfer Coefficients -- References -- 27 Shell-and-Tube Heat Exchangers: Heat-Transfer Fouling Resistance -- 27.1 Allowing for Thermal Expansion -- 27.2 Heat-Transfer Efficiency -- 27.3 Exchanger Cleaning -- 27.4 Mechanical Design for Good Heat Transfer -- 27.5 Importance of Shell- Side Cross- Flow -- 27.6 Summary -- References -- 28 Heat Exchanger Innovations -- 28.1 Smooth High Alloy Tubes -- 28.2 Low-Finned Tubes -- 28.3 Sintered Metal Tubes -- 28.4 Spiral Heat Exchanger -- 28.5 Tube Inserts -- 28.6 Twisted Tubes and Twisted Tube Bundle -- 28.7 Helical Tube Support Baffles -- 28.8 The Test of Time -- Reference -- 29 Shell-and-Tube Heat Exchangers: Design Details -- 29.1 Selecting the Process Fluid Location -- 29.2 Design the Shell Side for Ease of Cleaning -- Reference -- 30 Fired Heaters: Fire- and Flue-Gas Side Draft and Afterburn; Optimizing Excess Air -- 30.1 Effect of Reduced Air Flow -- 30.2 Absolute Combustion -- 30.3 Draft -- 30.4 Air Leakage -- 30.5 Efficient Air/Fuel Mixing -- 30.6 Optimizing Excess Air -- 30.7 Correcting O for Moisture Condensation -- 30.8 Air Preheating, Lighting Burners, and Heat Balancing -- Reference. 
505 0 |a 31 Fired Heaters: Process Side Coking Furnace Tubes and Tube Failures -- 31.1 Process Duty versus Heat Liberation -- 31.2 Heater Tube Failures -- 31.3 Flow in Heater Tubes -- 31.4 Low-NOx Burners -- 31.5 Tube Fire-Side Heaters -- 32 Refrigeration Systems An Introduction to Centrifugal Compressors -- 32.1 Refrigerant Receiver -- 32.2 Evaporator Temperature Control -- 32.3 Compressor and Condenser Operation -- 32.4 Refrigerant Composition -- 33 Cooling Water Systems -- 33.1 Locating Exchanger Tube Leaks -- 33.2 Tube-Side Fouling -- 33.3 Changing Tube-Side Passes -- 33.4 Cooling Tower pH Control -- 33.5 Wooden Cooling Towers -- 33.6 Back-Flushing and Air Rumbling -- 33.7 Acid Cleaning -- 33.8 Increasing Water Flow -- 33.9 Piping Pressure Losses -- 33.10 Cooling Tower Efficiency -- 33.11 Wet Bulb Temperature -- Reference -- 34 Catalytic Effects: Equilibrium and Kinetics -- 34.1 Kinetics vs. Equilibrium -- 34.2 Temperature vs. Time -- 34.3 Purpose of a Catalyst -- 34.4 Lessons from Lithuania -- 34.5 Zero Order Reactions -- 34.6 Runaway Reaction -- 34.7 Common Chemical Plant and Refinery Catalytic Processes -- 34.8 Summary -- 35 Centrifugal Pumps: Fundamentals of Operation Head, Flow, and Pressure -- 35.1 Head -- 35.2 Starting NPSH Requirement -- 35.3 Pressure -- 35.4 Pump Impeller -- 35.5 Effect of Temperature on Pump Capacity -- 34.6 Positive-Displacement Pumps -- 36 Centrifugal Pumps: Driver Limits Electric Motors and Steam Turbines -- 36.1 Electric Motors -- 36.2 Steam Turbines -- 36.3 Gears -- Reference -- 37 Centrifugal Pumps: Suction Pressure Limits Cavitation and Net Positive Suction Head -- 37.1 Cavitation and Net Positive Suction Head -- 37.2 Subatmospheric Suction Pressure -- 38 Centrifugal Pumps: Reducing Seal and Bearing Failures -- 38.1 A Packed Pump -- 38.2 Mechanical Seal -- 38.3 Purpose of Seal Flush -- 38.4 Seal Leaks -- 38.5 Wasting External Seal Flush Oil -- 38.6 Double Mechanical Seal -- 38.7 Dry Seals -- 38.8 Application of Nitrogen Barrier Seals Using Double Mechanical Seals -- 38.9 Steam Use in Seal Chamber -- 38.10 Pressure Balancing Holes -- 38.11 Bearing Failures -- 38.12 Starting a Centrifugal Pump -- References -- 39 Control Valves -- 39.1 Pumps and Control Valves -- 39.2 Operating on the Bad Part of the Curve -- 39.3 Control Valve Position -- 39.4 Valve Position Dials -- 39.5 Air-to-Open Valves -- 39.6 Saving Energy in Existing Hydraulic Systems -- 39.7 Control Valve Bypasses -- 39.8 Plugged Control Valves. 
505 0 |a 40 Separators: Vapor-Hydrocarbon-Water Liquid Settling Rates -- 40.1 Gravity Settling -- 40.2 Demisters -- 40.3 Entrainment Due to Foam -- 40.4 Water-Hydrocarbon Separations -- 40.5 Electrically Accelerated Water Coalescing -- 40.6 Static Coalescers -- 40.7 De-Entrainment Using a Vortex Tube Cluster -- 40.8 Inclined Plate Separator -- 41 Gas Compression: The Basic Idea The Second Law of Thermodynamics Made Easy -- 41.1 Relationship between Heat and Work -- 41.2 Compression Work (C - C ) -- Reference -- 42 Centrifugal Compressors and Surge Overamping the Motor Driver -- 42.1 Centrifugal Compression and Surge -- 42.2 Compressor Efficiency -- 42.3 Frequently Asked Questions about Centrifugal Compressors -- 43 Reciprocating Compressors The Carnot Cycle; Use of Indicator Card -- 43.1 Theory of Reciprocating Compressor Operation -- 43.2 The Carnot Cycle -- 43.3 The Indicator Card -- 43.4 Volumetric Compressor Efficiency -- 43.5 Inlet Valve Cap Temperature -- 43.6 Unloaders -- 43.7 Rod Loading -- 43.8 Variable Molecular Weight -- 44 Compressor Efficiency Effect on Driver Load -- 44.1 Jet Engine -- 44.2 Controlling Vibration and Temperature Rise -- 44.3 Relative Efficiency -- 44.4 Relative Work: External Pressure Losses -- Reference -- 45 Safety Concerns Relief Valves, Corrosion, and Safety Trips -- 45.1 Relief-Valve Plugging -- 45.2 Relieving to Atmosphere -- 45.3 Corrosion Monitoring -- 45.4 Alarms and Trips -- 45.5 Auto-ignition of Hydrocarbons -- 45.6 Paper Gaskets -- 45.7 Calculating Heats of Reaction -- 45.8 Hot Water Explodes Out of Manway -- 46 Relief Valve System Design -- 46.1 Coke Drums -- 46.2 High-Pressure Fixed-Bed Reactors -- 46.3 Trayed Towers and Packed Columns -- 46.4 Liquid-Filled Vessels -- 46.5 Sour Water Strippers -- 46.6 Protecting Relief Valves from Fouling and Corrosion -- 46.7 Dual Relief Valves -- 46.8 Process Design Responsibility for Relief Valve Design -- 46.9 Relief Valve and Pressure Sensing Connections -- 46.10 Heat Exchanger Safety Reliefs -- 46.11 Relief Valve Effluents -- 46.12 Maintaining Flare Header Positive Pressures -- 46.13 Leaking Relief Valves -- 46.14 Tray Failure Due to Relief Valves -- 46.15 The Piper Alpha Rig Destruction -- 47 Setting Pressure Relief Valves -- 47.1 Maximum Allowable Working Pressure -- 47.2 Exchanger Protected by Its Own Relief Valve -- 47.3 Chain Lock-Open -- 47.4 The Situation at the Refinery in Tulsa -- 47.5 Relief Valve Location on Distillation Towers -- 47.6 Use of Rupture Disks Beneath Relief Valves -- 47.7 Coke Drum Relief Valve Location -- Reference -- 48 Reduction of Flare Losses -- 48.1 Measuring Losses to Flare from Individual Locations -- 48.2 Leaking Relief Valves -- 48.3 Venting to the Flare -- 48.4 Sludge in Cooling Tower Water. 
505 0 |a 48.5 Cooling Water Line Sludge Accumulation -- 48.6 Cooling Water Lines Pressure Drop -- 48.7 Air-Cooled Condensers -- 48.8 Optimizing Air Cooler Blade Angles -- 48.9 Water Mist -- 48.10 Air Back-Flow -- 48.11 Slipping Belts -- 48.12 Minimizing Cracked Gas Evolution -- 48.13 Flaring Due to Leaking Hot Vapor Bypass Tower Pressure Control -- 48.14 Flare Recovery Systems -- 48.15 Flare Recovery Systems -- References -- 49 Corrosion?Process Units -- 49.1 Closer to Home -- 49.2 Erosive Velocities -- 49.3 Mixed Phase Flow -- 49.4 Carbonate Corrosion -- 49.5 Naphthenic Acid Attack -- 49.6 A Short History of Corrosion -- 49.7 Corrosion?Fired Heaters -- 49.8 Oil-Fired Heaters -- 49.9 Finned-Tube Corrosion -- 49.10 Field Identification of Piping Metallurgy -- 49.11 Carboxylic Acid Corrosion -- 50 Waste Water Strippers -- 50.1 Purpose of Sour Water Strippers -- 50.2 Two-Stage Sour Water Stripper -- 50.3 Tray Efficiency -- 50.4 Computer Simulation and Theoretical Tray Efficiency -- 50.5 Use of Caustic to Improve Stripping -- 50.6 Water Stripper Reboiler Corrosion and Fouling -- 50.7 Ballast Water Stripper -- 50.8 Conclusions -- Reference -- 51 Fluid Flow in Pipes Basic Ideas to Evaluate Newtonian and Non-Newtonian Flow -- 51.1 Field Engineer?s Method for Estimating Pipe Flow -- 51.2 Field Pressure Drop Survey -- 51.3 Line Sizing for Low-Viscosity and Turbulent Flow -- 51.4 Frictional Pressure Loss in Rough and Smooth Pipe -- 51.5 Special Case for Laminar Flow -- 51.6 Smooth Pipes and Turbulent Flow -- 51.7 Very Rough Pipes and Very Turbulent Flow -- 51.8 Non-Newtonian Fluids -- 51.9 Some Types of Flow Behavior -- 51.10 Viscoelastic Fluids -- 51.11 Identifying the Type of Flow Behavior -- 51.12 Apparent and Effective Viscosity of Non-Newtonian Liquids -- 51.13 The Power Law or Ostwald de Waele Model -- 51.14 Generalized Reynolds Numbers -- References -- 52 Super-Fractionation Separation Stage -- 52.1 My First Encounter with Super-Fractionation -- 52.2 Kettle Reboiler -- 52.3 Partial Condenser -- 52.4 Side Reboilers and Intercoolers -- 53 Hand Calculations for Distillation Towers Vapor-Liquid Equilibrium, Absorption, and Stripping Calculations -- 53.1 Introduction -- 53.2 Bubble Point and Dew Point Calculations -- 53.3 The Absorption Factor or Stripping Factor Chart -- 53.4 Conclusion -- References -- 54 Computer Modeling and Control -- 54.1 Modeling a Propane-Propylene Splitter -- 54.2 Computer Control -- 54.3 Cannabinoid Fractionator -- 54.4 Distillation Simulation -- 54.5 Computer Control of Distillation Towers -- 54.6 Material Balance Problems in Computer Modeling -- 54.7 Fifth Edition Update Comments -- 55 Taking Measurements and Samples in the Field and Troubleshooting Process Problems -- 55.1 The Flooding De-ethanizer -- 55.2 The Elements of Troubleshooting -- 55.3 Field Calculations -- 55.4 Troubleshooting Tools?Your Wrench -- 55.5 Troubleshooting Methods -- 55.6 Field Measurements -- 51.7 An Afterword -- Glossary -- Index. 
520 |a A practical and accessible reference book for process industry professionals and students seeking the latest methods for troubleshooting and maintaining process equipment. 
530 |a Also available in print and PDF edition. 
533 |a Electronic reproduction.  |b New York, N.Y. :  |c McGraw Hill,  |d 2022.  |n Mode of access: World Wide Web.  |n System requirements: Web browser.  |n Access may be restricted to users at subscribing institutions. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 |a Description based on e-Publication PDF. 
650 0 |a Chemical plants  |x Equipment and supplies.  
655 0 |a Electronic books. 
700 1 |a Lieberman, Elizabeth T.,  |e author. 
776 0 8 |i Print version:  |t A Working Guide to Process Equipment, Fifth Edition.  |b Fifth edition.  |d New York, N.Y. : McGraw-Hill Education, 2022  |z 9781260461664 
830 0 |a McGraw-Hill's AccessEngineeringLibrary. 
856 4 0 |u https://accessengineeringlibrary.uam.elogim.com/content/book/9781260461664  |z Texto completo