Cargando…

Fundamentals of Radar Signal Processing, Third Edition /

This thoroughly revised resource offers comprehensive coverage of foundational digital signal processing methods for both pulsed and FMCW radar. Developed from the author?s extensive academic and professional experience, Fundamentals of Radar Signal Processing, Third Edition covers all of the digita...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Richards, M. A. (Mark A.), 1952- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw Hill LLC, [2022]
Edición:Third edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • Acknowledgments
  • Selected Symbols
  • Selected Acronyms
  • 1 Introduction to Radar Systems and Signal Processing
  • 1.1 History and Applications of Radar
  • 1.2 Basic Radar Functions
  • 1.3 Elements of a Radar
  • 1.3.1 Radar Frequencies
  • 1.3.2 Radar Waveforms and Transmitters
  • 1.3.3 Antennas
  • 1.3.4 Virtual Elements and Virtual Arrays
  • 1.3.5 Receivers
  • 1.4 Common Threads in Radar Signal Processing
  • 1.4.1 Signal-to-Interference Ratio
  • 1.4.2 Resolution and Region of Support
  • 1.4.3 Integration and Phase History Modeling
  • 1.5 A Preview of Basic Radar Signal Processing
  • 1.5.1 Radar Time Scales
  • 1.5.2 Phenomenology
  • 1.5.3 Signal Conditioning and Interference Suppression
  • 1.5.4 Detection
  • 1.5.5 Measurements and Track Filtering
  • 1.5.6 Imaging
  • 1.6 Radar Literature
  • 1.6.1 Introductions to Radar Systems and Applications
  • 1.6.2 Basic Radar Signal Processing
  • 1.6.3 Advanced Radar Signal Processing
  • 1.6.4 Radar Applications
  • 1.6.5 Current Radar Research
  • References
  • Problems
  • 2 Signal Models
  • 2.1 Components of a Radar Signal
  • 2.2 Modeling Amplitude
  • 2.2.1 Simple Point Target Radar Range Equation
  • 2.2.2 Distributed Target Forms of the Range Equation
  • 2.2.3 Radar Cross Section
  • 2.2.4 Radar Cross Section for Meteorological Targets
  • 2.2.5 Statistical Description of Radar Cross Section
  • 2.2.6 Target Fluctuation Models
  • 2.2.7 Swerling Models
  • 2.2.8 Effect of Target Fluctuations on Doppler Spectrum
  • 2.3 Modeling Clutter
  • 2.3.1 Behavior of ?0
  • 2.3.2 Signal-to-Clutter Ratio
  • 2.3.3 Temporal and Spatial Correlation of Clutter
  • 2.3.4 Compound Models of Radar Cross Section
  • 2.4 Noise Model and Signal-to-Noise Ratio
  • 2.5 Jamming
  • 2.6 Electromagnetic Interference
  • 2.7 Frequency Models: The Doppler Shift
  • 2.7.1 Doppler Shift
  • 2.7.2 The Stop-and-Hop Approximation and Phase History
  • 2.7.3 Measuring Doppler Shift: Spatial Doppler
  • 2.8 Spatial Models
  • 2.8.1 Coherent Scattering
  • 2.8.2 Variation with Angle
  • 2.8.3 Variation with Range
  • 2.8.4 Noncoherent Scattering
  • 2.8.5 Projections
  • 2.8.6 Multipath
  • 2.9 Spectral Model
  • 2.10 Summary
  • References
  • Problems
  • 3 Radar Data Acquisition and Organization
  • 3.1 A Signal Processor?s Radar Architecture Model
  • 3.2 Measuring a Range Profile
  • 3.2.1 Pulsed Radar Range Profile: One Pulse in Fast Time
  • 3.2.2 FMCW Radar Range Profile: One Sweep in Fast Time
  • 3.3 Multiple Range Profiles: Slow Time and the CPI
  • 3.4 Multiple Channels: The Datacube
  • 3.5 Dwells
  • 3.6 Sampling the Doppler Spectrum
  • 3.6.1 The Nyquist Rate in Doppler
  • 3.6.2 Straddle Loss
  • 3.7 Sampling in the Spatial and Angle Dimensions
  • 3.7.1 Spatial Array Sampling
  • 3.7.2 Sampling in Angle
  • 3.8 I/Q Imbalance and Digital I/Q
  • 3.8.1 I/Q Imbalance and Offset
  • 3.8.2 Correcting I/Q Errors
  • 3.8.3 Digital I/Q 157
  • 3.9 Summary
  • References
  • Problems.
  • 4 Radar Waveforms
  • 4.1 Introduction
  • 4.2 The Waveform Matched Filter
  • 4.2.1 The Matched Filter
  • 4.2.2 Matched Filter for the Simple Pulse
  • 4.2.3 All-Range Coherent Matched Filtering
  • 4.2.4 Straddle Loss
  • 4.2.5 Range Resolution of the Matched Filter
  • 4.3 Matched Filtering of Moving Targets
  • 4.4 The Ambiguity Function
  • 4.4.1 Definition and Properties of the Ambiguity Function
  • 4.4.2 Ambiguity Function of the Simple Pulse
  • 4.5 The Pulse Burst Waveform
  • 4.5.1 Matched Filter for the Pulse Burst Waveform
  • 4.5.2 Pulse-by-Pulse Processing
  • 4.5.3 Range Ambiguity
  • 4.5.4 Doppler Response of the Pulse Burst Waveform
  • 4.5.5 Ambiguity Function for the Pulse Burst Waveform
  • 4.5.6 The Slow-Time Spectrum and the Periodic Ambiguity Function
  • 4.6 Frequency-Modulated Pulse Compression Waveforms
  • 4.6.1 Linear Frequency Modulation
  • 4.6.2 The Principle of Stationary Phase
  • 4.6.3 Ambiguity Function of the LFM Waveform
  • 4.6.4 Range-Doppler Coupling
  • 4.6.5 Stretch Processing
  • 4.7 Range Sidelobe Control for FM Waveforms
  • 4.7.1 Matched Filter Frequency Response Shaping
  • 4.7.2 Matched Filter Impulse Response Shaping
  • 4.7.3 Waveform Spectrum Shaping
  • 4.8 Frequency-Coded Waveforms
  • 4.8.1 The Stepped Frequency Waveform
  • 4.8.2 The Stepped Chirp Waveform
  • 4.8.3 Costas Frequency Codes
  • 4.9 Phase-Modulated Pulse Compression Waveforms
  • 4.9.1 Biphase Codes225
  • 4.9.2 Polyphase Codes
  • 4.9.3 Mismatched Phase Code Filters
  • 4.10 Continuous Wave Radar
  • 4.10.1 Single-Frequency CW
  • 4.10.2 Periodically Modulated CW
  • 4.10.3 Linear Frequency-Modulated CW
  • 4.10.4 ?Fast Chirp? Linear Frequency-Modulated CW
  • 4.10.5 Sidelobe Control in Linear FMCW
  • 4.10.6 Other CW Waveforms
  • 4.11 Frequency-Modulated versus Phase-Modulated Waveforms
  • 4.12 Summary
  • References
  • Problems
  • 5 Doppler Processing
  • 5.1 Introduction
  • 5.2 Moving Platform Effects on the Doppler Spectrum
  • 5.3 Moving Target Indication
  • 5.3.1 Pulse Cancellers
  • 5.3.2 Vector Formulation of the Matched Filter
  • 5.3.3 Matched Filters for Clutter Suppression
  • 5.3.4 Blind Speeds and Staggered PRFs
  • 5.3.5 MTI Figures of Merit
  • 5.3.6 Limitations to MTI Performance
  • 5.4 Pulse Doppler Processing
  • 5.4.1 The Discrete-Time Fourier Transform of a Moving Target
  • 5.4.2 Sampling the DTFT: The Discrete Fourier Transform
  • 5.4.3 The DFT of Noise
  • 5.4.4 Pulse Doppler Processing Gain
  • 5.4.5 Matched Filter and Filterbank Interpretations of Pulse Doppler Processing with the DFT
  • 5.4.6 Fine Doppler Estimation
  • 5.4.7 Modern Spectral Estimation in Pulse Doppler Processing.
  • 5.4.8 CPI-to-CPI Stagger and Blind Zone Maps
  • 5.5 Pulse Pair Processing
  • 5.6 Additional Doppler Processing Issues
  • 5.6.1 Range Migration and the Keystone Transform
  • 5.6.2 Combined MTI and Pulse Doppler Processing
  • 5.6.3 Transient Effects
  • 5.6.4 PRF Regimes
  • 5.6.5 PRF Selection
  • 5.6.6 Ambiguity Resolution
  • 5.7 Clutter Mapping
  • 5.8 The Moving Target Detector
  • 5.9 MTI for Moving Platforms: Ground Moving Target Indication
  • 5.9.1 Simplified GMTI Clutter and Target Models
  • 5.9.2 DPCA and ATI
  • 5.9.3 Clutter Suppression Interferometry
  • 5.9.4 Analysis of Adaptive DPCA
  • 5.10 Summary
  • References
  • Problems
  • 6 Detection Fundamentals343
  • 6.1 Introduction
  • 6.2 Radar Detection as Hypothesis Testing
  • 6.2.1 The Neyman-Pearson Detection Rule
  • 6.2.2 The Likelihood Ratio Test
  • 6.3 Threshold Detection in Coherent Systems
  • 6.3.1 The Gaussian Case for Coherent Receivers
  • 6.3.2 Unknown Parameters and Threshold Detection
  • 6.3.3 Linear and Square Law Detectors
  • 6.3.4 Other Unknown Parameters
  • 6.4 Threshold Detection of Radar Signals
  • 6.4.1 Coherent, Noncoherent, and Binary Integration
  • 6.4.2 Nonfluctuating Targets
  • 6.4.3 Albersheim?s Equation
  • 6.4.4 Fluctuating Targets
  • 6.4.5 Simplified Equations for PD for Some Swerling Cases
  • 6.4.6 Shnidman?s Equation
  • 6.4.7 Detection in Clutter
  • 6.4.8 Binary Integration
  • 6.4.9 Integration Summary
  • 6.5 Constant False Alarm Rate Detection
  • 6.5.1 The Effect of Unknown Interference Power on False Alarm Probability
  • 6.5.2 Cell-Averaging CFAR
  • 6.5.3 Analysis of Cell-Averaging CFAR
  • 6.5.4 CA CFAR Limitations
  • 6.5.5 Extensions to Cell-Averaging CFAR
  • 6.5.6 Order Statistic CFAR
  • 6.5.7 Adaptive CFAR
  • 6.5.8 CFAR for Two-Parameter PDFs
  • 6.5.9 Temporal CFAR
  • 6.5.10 Distribution-Free CFAR
  • 6.6 System-Level Control of False Alarms
  • 6.7 Summary
  • References
  • Problems
  • 7 Measurements and Introduction to Tracking
  • 7.1 Estimators
  • 7.1.1 Estimator Properties
  • 7.1.2 The Cram?r-Rao Lower Bound
  • 7.1.3 The CRLB and Signal-to-Noise Ratio
  • 7.1.4 Maximum Likelihood Estimators
  • 7.2 Range, Doppler, and Angle Estimators
  • 7.2.1 Range Estimators
  • 7.2.2 Doppler Signal Estimators
  • 7.2.3 Angle Estimators
  • 7.3 Introduction to Tracking
  • 7.3.1 Optimal Combination of Two Noisy Measurements
  • 7.3.2 Sequential Least Squares Estimation
  • 7.3.3 The ?-? Filter
  • 7.3.4 The Kalman Filter
  • 7.3.5 The Tracking Cycle
  • 7.4 Summary
  • References
  • Problems
  • 8 Introduction to Synthetic Aperture Imaging
  • 8.1 Fundamental SAR Concepts and Relations
  • 8.1.1 Cross-Range Resolution in Radar
  • 8.1.2 The Synthetic Aperture Viewpoint
  • 8.1.3 Doppler Viewpoint
  • 8.1.4 SAR Coverage and Sampling
  • 8.2 Stripmap SAR Data Characteristics
  • 8.2.1 Stripmap SAR Geometry
  • 8.2.2 Stripmap SAR Data Set
  • 8.3 Stripmap SAR Image Formation Algorithms
  • 8.3.1 Doppler Beam Sharpening
  • 8.3.2 Quadratic Phase Error Effects
  • 8.3.3 Range-Doppler Algorithms
  • 8.3.4 Depth of Focus
  • 8.3.5 Range Migration Algorithm.
  • 8.4 Spotlight SAR Data Characteristics
  • 8.5 The Polar Format Image Formation Algorithm for Spotlight SAR
  • 8.6 Backprojection
  • 8.7 Interferometric SAR
  • 8.7.1 The Effect of Height on a SAR Image
  • 8.7.2 IFSAR Processing Steps
  • 8.8 Other Considerations
  • 8.8.1 Motion Compensation
  • 8.8.2 Autofocus
  • 8.8.3 Speckle Reduction
  • 8.8.4 Moving Targets
  • 8.9 Summary
  • References
  • Problems
  • 9 Introduction to Array Processing
  • 9.1 Virtual Arrays
  • 9.2 Beamforming and Beam Steering
  • 9.2.1 Time Delay Steering
  • 9.2.2 Phase Steering
  • 9.2.3 Narrowband Phase Beamforming
  • 9.2.4 Adaptive Beamforming
  • 9.2.5 Adaptive Beamforming with Preprocessing
  • 9.3 Space-Time Signal Environment
  • 9.4 Space-Time Signal Modeling
  • 9.5 Processing the Space-Time Signal
  • 9.5.1 Optimum Matched Filtering
  • 9.5.2 STAP Metrics
  • 9.5.3 Relation to Displaced Phase Center Antenna Processing
  • 9.5.4 Adaptive Matched Filtering
  • 9.6 Reduced-Dimension STAP
  • 9.7 Advanced STAP Algorithms and Analysis
  • 9.8 Limitations to STAP
  • 9.9 Summary
  • References
  • Problems
  • A Selected Topics in Probability and Random Processes
  • A.1 Probability Density Functions and Likelihood Functions
  • A.2 Common Probability Distributions in Radar
  • A.2.1 Power Distributions
  • A.2.2 Amplitude Distributions
  • A.2.3 The Unfortunate Tendency in Radar to Call Power Distributions by the Name of the Amplitude Distribution
  • A.2.4 Phase Distributions
  • A.3 Estimators and the Cram?r-Rao Lower Bound
  • A.3.1 The Cram?r-Rao Lower Bound on Estimator Variance
  • A.3.2 The CRLB for Transformed Parameters
  • A.3.3 Signals in Additive White Gaussian Noise
  • A.3.4 Signals with Multiple Parameters in AWGN
  • A.3.5 Complex Signals and Parameters in AWGN
  • A.3.6 Finding Minimum Variance Estimators
  • A.4 Random Signals in Linear Systems
  • A.4.1 Correlation Functions
  • A.4.2 Correlation and Linear Estimation
  • A.4.3 Power Spectrum
  • A.4.4 White Noise
  • A.4.5 The Effect of LSI Systems on Random Signals
  • References
  • B Selected Topics in Digital Signal Processing
  • B.1 Fourier Transforms
  • B.2 Windowing
  • B.3 Sampling, Quantization, and A/D Converters
  • B.3.1 Sampling
  • B.3.2 Quantization
  • B.3.3 A/D Conversion Technology
  • B.4 Spatial Frequency
  • B.5 Correlation
  • B.6 Vector-Matrix Representations and Eigenanalysis
  • B.6.1 Basic Definitions and Operations
  • B.6.2 Basic Eigenanalysis
  • B.6.3 Eigenstructure of Sinusoids in White Noise
  • B.7 Instantaneous Frequency
  • B.8 Decibels
  • References
  • Problems
  • Index.