Cargando…

Open Channel Hydraulics, Third Edition /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sturm, Terry W. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2021]
Edición:Third edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Dedication
  • Contents
  • Preface
  • Acknowledgments
  • About the Author
  • 1 Basic Principles
  • 1.1 Introduction
  • 1.2 Characteristics of Open Channel Flow
  • 1.3 Solution of Open Channel Flow Problems
  • 1.4 Purpose
  • 1.5 Historical Background
  • 1.6 Definitions
  • 1.7 Basic Equations
  • 1.8 A Note on Turbulence
  • 1.9 Surface versus Form Resistance
  • 1.10 Dimensional Analysis
  • 1.11 Computer Programs
  • 2 Specific Energy
  • 2.1 Definition of Specific Energy
  • 2.2 Specific Energy Diagram
  • 2.3 Choke
  • 2.4 Discharge Diagram
  • 2.5 Contractions and Expansions with Head Loss
  • 2.6 Critical Depth in Nonrectangular Sections
  • 2.7 Overbank Flow
  • 2.8 Weirs
  • 2.9 Energy Equation in a Stratified Flow
  • 3 Momentum
  • 3.1 Introduction
  • 3.2 Hydraulic Jump
  • 3.3 Stilling Basins
  • 3.4 Surges
  • 3.5 Bridge Piers
  • 3.6 Spur Dikes
  • 3.7 Supercritical Transitions
  • 4 Uniform Flow
  • 4.1 Introduction
  • 4.2 Dimensional Analysis
  • 4.3 Momentum Analysis
  • 4.4 Background of the Chezy and Manning Formulas
  • 4.5 Turbulence and Flow Resistance
  • 4.6 Discussion of Factors Affecting fand n
  • 4.7 Selection of Manning?s nin Natural Channels
  • 4.8 Channels with Composite Roughness
  • 4.9 Uniform Flow Computations
  • 4.10 Partly Full Flow in Smooth, Circular Conduits
  • 4.11 Street Gutter Flow
  • 4.12 Gravity Sewer Design
  • 4.13 Compound Channels
  • 4.14 Design of Channels with Flexible Linings
  • 4.15 Slope Classification
  • 4.16 Flood Control Channels
  • 4.17 Dimensionally Homogeneous Manning?s Formula
  • 4.18 Channel Photographs
  • 5 Gradually Varied Flow
  • 5.1 Introduction
  • 5.2 Equation of Gradually Varied Flow
  • 5.3 Classification of Water Surface Profiles
  • 5.4 Lake Discharge Problem
  • 5.5 Water Surface Profile Computation
  • 5.6 Distance Determined from Depth Changes
  • 5.7 Depth Computed from Distance Changes
  • 5.8 Natural Channels
  • 5.9 Floodway Encroachment Analysis
  • 5.10 Bresse Solution
  • 5.11 Spatially Varied Flow
  • 6 Hydraulic Structures
  • 6.1 Introduction
  • 6.2 Spillways
  • 6.3 Spillway Aeration
  • 6.4 Stepped Spillways
  • 6.5 Culverts
  • 6.6 Bridges
  • 7 Governing Equations of Unsteady Flow
  • 7.1 Introduction
  • 7.2 Derivation of Saint-Venant Equations
  • 7.3 Transformation to Characteristic Form
  • 7.4 Mathematical Interpretation of Characteristics
  • 7.5 Initial and Boundary Conditions
  • 7.6 Simple Wave
  • 8 Numerical Solution of the Unsteady Flow Equations
  • 8.1 Introduction
  • 8.2 Method of Characteristics
  • 8.3 Boundary Conditions
  • 8.4 Explicit Finite Difference Methods
  • 8.5 Implicit Finite Difference Method
  • 8.6 Comparison of Numerical Methods
  • 8.7 Shocks
  • 8.8 Dam-Break Problem
  • 8.9 Practical Aspects of River Computations
  • 9 Simplified Methods of Flow Routing
  • 9.1 Introduction
  • 9.2 Hydrologic Routing
  • 9.3 Kinematic Wave Routing
  • 9.4 Diffusion Routing
  • 9.5 Muskingum-Cunge Method
  • 10 Flow in Alluvial Channels
  • 10.1 Introduction
  • 10.2 Sediment Properties
  • 10.3 Initiation of Motion
  • 10.4 Application to Stable Channel Design
  • 10.5 Bed Forms
  • 10.6 Stage-Discharge Relationships
  • 10.7 Sediment Discharge
  • 10.8 Streambed Adjustments and Scour
  • 11 Three-Dimensional CFD Modeling for Open Channel Flows
  • 11.1 Introduction
  • 11.2 Governing Equations
  • 11.3 Discretization of the Governing Equations
  • 11.4 Boundary Conditions
  • 11.5 RANS Case Study
  • 11.6 LES Application
  • Index.