Cargando…

Environmental Biotechnology : Principles and Applications, Second Edition /

This thoroughly revised educational resource presents the biological principles that underlie modern microbiological treatment technologies. Written by two of the field's foremost researchers, Environmental Biotechnology: Principles and Applications, Second Edition clearly explains the new tech...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Rittmann, Bruce E. (Autor), McCarty, Perry L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2020].
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface
  • 1 Moving Toward Sustainability
  • 1.1 Water Uses and Resources
  • 1.2 Wastewater ?s Resources
  • 1.3 Climate Change
  • 1.4 Sustainability
  • 1.5 The Role of Environmental Biotechnology
  • 1.6 Organization of the Book
  • 1.7 References
  • 2 Basics of Microbiology
  • 2.1 The Microbial Cell
  • 2.2 Microbial Classification
  • 2.3 Prokaryotes
  • 2.3.1 Bacterial and Archaeal Cell Structure and Function.
  • 2.3.2 Phylogenic Lineages of Bacteria
  • 2.3.3 Phylogenic Lineages of Archaea
  • 2.4 Eukarya
  • 2.4.1 Fungi.
  • 2.4.2 Algae.
  • 2.4.3 Protozoa
  • 2.4.4 Other Multicellular Microorganisms
  • 2.5 Viruses
  • 2.6 Infectious Disease
  • 2.7 References
  • 3 Biochemistry, Metabolism, Genetics, and Information Flow
  • 3.1 Biochemistry
  • 3.1.1 Enzymes
  • 3.1.2 Enzyme Reactivity
  • 3.1.3 Regulating Enzyme Activity.
  • 3.2 Energy Capture
  • 3.2.1 Electron and Energy Carriers
  • 3.2.2 Energy and Electron Investments.
  • 3.3 Metabolism
  • 3.3.1 Catabolism
  • 3.3.2 Anabolism
  • 3.3.3 Metabolism and Trophic Groups.
  • 3.4 Genetics and Information Flow
  • 3.4.1 Deoxyribonucleic Acid (DNA)
  • 3.4.2 The Chromosome.
  • 3.4.3 Plasmids.
  • 3.4.4 DNA Replication
  • 3.4.5 Ribonucleic Acid (RNA).
  • 3.4.6 Transcription.
  • 3.4.7 Messenger RNA (mRNA)
  • 3.4.8 Transfer RNA (tRNA)
  • 3.4.9 Translation and the Ribosomal RNA (rRNA)
  • 3.4.10 Translation
  • 3.4.11 Regulation
  • 3.4.12 Phylogeny
  • 3.4.13 The Basics of Phylogenetic Classification
  • 3.5 References
  • 3.6 Bibliography
  • 3.7 Problems
  • 4 Microbial Ecology
  • 4.1 Selection
  • 4.2 Exchange of Materials
  • 4.2.1 Exchange of Substrates
  • 4.2.2 Exchange of Genetic Information
  • 4.2.3 Growth Factors
  • 4.2.4 Exchange of Chemical Signals
  • 4.3 Adaptation
  • 4.4 Tools to Study Microbial Ecology
  • 4.4.1 Traditional Enrichment Tools
  • 4.4.2 Molecular Targets
  • 4.4.3 Genomics Methods Based on the Ribosomal RNA
  • 4.4.4 Genomics Methods Based on the Ribosomal DNA
  • 4.4.5 Diversity Analysis of Genomics Results
  • 4.4.6 Functional Genomics Analysis
  • 4.4.7 Transcriptomics
  • 4.4.8 Proteomics
  • 4.4.9 Functional Prediction
  • 4.5 References
  • 4.6 Bibliography
  • 4.7 Problems
  • 5 Stoichiometry and Energetics
  • 5.1 An Example Stoichiometric Equation
  • 5.2 An Empirical Formula for Microbial Cells
  • 5.3 Formulations for Cells Containing Storage Products
  • 5.4 Substrate Partitioning and Cellular Yield
  • 5.5 Overall Reactions for Biological Growth
  • 5.6 Fermentation Reactions
  • 5.6.1 Simple Fermentation
  • 5.6.2 Mixed Fermentation
  • 5.7 Energetics of Bacterial Growth
  • 5.7.1 Free Energy of the Energy Reaction
  • 5.7.2 Microbial Yield Coefficient and Reaction Energetics
  • 5.7.3 Oxidized Nitrogen Sources
  • 5.8 References
  • 5.9 Problems
  • 6 Microbial Kinetics
  • 6.1 Basic Rate Expressions
  • 6.2 Estimating Parameter Values
  • 6.3 Basic Mass Balances
  • 6.4 Mass Balances on Inert Biomass and Volatile Suspended Solids
  • 6.5 Microbial Products
  • 6.6 Input of Active Biomass
  • 6.7 Nutrients and Electron Acceptors
  • 6.8 CSTR Summary Equations
  • 6.9 Hydrolysis of Particulate and Polymeric Substrates
  • 6.10 Inhibition
  • 6.11 Additional Rate Expressions
  • 6.12 References
  • 6.13 Problems
  • 7 Biofilm Kinetics
  • 7.1 Microbial Aggregation
  • 7.2 Why Do Biofilms Form?
  • 7.3 The Idealized Biofilm
  • 7.3.1 Substrate Phenomena
  • 7.3.2 Illustration for First-Order Kinetics
  • 7.3.3 General Solution When Sw Is Known
  • 7.3.4 The Biofilm Mass Balance
  • 7.4 The Steady-State Biofilm
  • 7.5 The Steady-State-Biofilm Solution
  • 7.6 Estimating Parameter Values
  • 7.7 Average Biofilm SRT
  • 7.8 Completely Mixed Biofilm Reactor
  • 7.9 Inert Biomass, Nutrients, and Electron Acceptor
  • 7.10 Trends in CMBR Performance
  • 7.11 Normalized Surface Loading
  • 7.12 Nonsteady-State Biofilms
  • 7.13 Special-Case Biofilm Solutions
  • 7.13.1 Deep Biofilms
  • 7.13.2 Zero-Order Kinetics
  • 7.14 Numerical Modeling of Biofilms
  • 7.15 References
  • 7.16 Problems.
  • 8 Microbial Products
  • 8.1 Extracellular Polymeric Substances
  • 8.2 Soluble Microbial Products
  • 8.3 Steady-State Model Including EPS and SMP
  • 8.4 Relating EPS and SMP to Aggregate Parameters
  • 8.5 Nutrient-Uptake and Acceptor-Utilization Rates
  • 8.6 Parameter Values
  • 8.7 Modeling EPS, SMP, and Xin for a Biofilm Process
  • 8.8 Intracellular Storage Products (ISP
  • 8.9 References
  • 8.10 Problems
  • 9 Reactor Characteristics and Kinetics
  • 9.1 Reactor Types
  • 9.1.1 Suspended-Growth Reactors
  • 9.1.2 Biofilm Reactors
  • 9.1.3 Membrane Bioreactors (MBRs)
  • 9.1.4 Biofilm Reactors with Active Substrata
  • 9.1.5 Reactor Arrangements
  • 9.2 Important Factors in the Engineering Design of Reactors
  • 9.2.1 Selecting an Appropriate SF for Design
  • 9.2.2 Effect of SF on System Efficiency for Simple Substrates
  • 9.2.3 Design When Biosolids Settling or Other Factors Are Critical
  • 9.3 Mass Balances
  • 9.3.1 Batch Reactor
  • 9.3.2 Continuous-Flow Stirred-Tank Reactor with Effluent Recycle.
  • 9.3.3 Plug-Flow Reactor
  • 9.3.4 Plug-Flow Reactor with Effluent Recycle
  • 9.3.5 Plug-Flow Reactor with Settling and Cell Recycle
  • 9.4 Alternative Rate Models
  • 9.5 Linking Stoichiometric and Mass Balance Equations
  • 9.6 Reactors in Series
  • 9.7 References
  • 9.8 Bibliography
  • 9.9 Problems
  • 10 Methanogenesis
  • 10.1 Uses of Methanogenic Treatment
  • 10.2 Treating Dilute Wastewaters
  • 10.2.1 The UASB and AFMB
  • 10.2.2 Anaerobic Membrane Bioreactors
  • 10.3 Reactor Configurations
  • 10.4 Process Chemistry and Microbiology
  • 10.4.1 Process Microbiology
  • 10.4.2 Process Chemistry
  • 10.5 Process Kinetics
  • 10.5.1 Temperature Effects
  • 10.5.2 Reaction Kinetics for a CSTR
  • 10.5.3 Complex Substrates
  • 10.5.4 Process Optimization
  • 10.5.5 Reaction Kinetics for Biofilm Processes
  • 10.5.6 Kinetics with Hydrolysis as Limiting Factor
  • 10.6 Special Factors in the Design of Anaerobic Biosolids Digesters
  • 10.6.1 Loading Criteria
  • 10.6.2 Mixing
  • 10.6.3 Heating
  • 10.6.4 Gas Collection
  • 10.6.5 Performance
  • 10.7 Example Designs for Anaerobic Treatment of Dilute Wastewater
  • 10.8 References
  • 10.9 Problems
  • 11 Aerobic Suspended-Growth Processes
  • 11.1 Characteristics of Classical Activated Sludge
  • 11.1.1 The Basic Activated Sludge Configuration
  • 11.1.2 Microbial Ecology
  • 11.1.3 Oxygen and Nutrient Requirements
  • 11.1.4 Impacts of SRT
  • 11.2 Process Configurations
  • 11.2.1 Physical Configurations
  • 11.2.2 Oxygen-Supply Modifications
  • 11.2.3 Loading Modifications
  • 11.3 Design and Operating Criteria
  • 11.3.1 Historical Background
  • 11.3.2 Food-to-Microorganism Ratio
  • 11.3.3 Solids Retention Time
  • 11.3.4 Comparison of Loading Factors
  • 11.3.5 Mixed-Liquor Suspended Solids, the SVI, and the Recycle Ratio
  • 11.4 Aeration Systems
  • 11.4.1 Oxygen-Transfer and Mixing Rates
  • 11.4.2 Diffused Aeration Systems
  • 11.4.3 Mechanical Aeration Systems
  • 11.5 Bulking and Other Sludge-Settling Problems
  • 11.5.1 Bulking Sludge
  • 11.5.2 Foaming and Scum Control
  • 11.5.3 Rising Sludge
  • 11.5.4 Dispersed Growth and Pinpoint Floc
  • 11.5.5 Viscous Bulking
  • 11.5.6 Addition of Polymers
  • 11.6 Activated Sludge Design and Analysis
  • 11.7 Analysis and Design of Settlers
  • 11.7.1 Activated Sludge Properties
  • 11.7.2 Settler Components
  • 11.7.3 Loading Criteria
  • 11.7.4 Basics of Flux Theory
  • 11.7.5 State-Point Analysis
  • 11.7.6 Connecting the Settler and Aeration Tank
  • 11.7.7 Limitations of State-Point Analysis
  • 11.8 Membrane Bioreactors (MBRs
  • 11.9 Integrated Fixed-Film Activated Sludge
  • 11.10 References
  • 11.11 Bibliography
  • 11.12 Problems
  • 12 Aerobic Biofilm Processes
  • 12.1 Biofilm Process Considerations
  • 12.2 Trickling Filters and Biological Towers
  • 12.3 Rotating Biological Contactors
  • 12.4 Granular-Media Filters
  • 12.5 Fluidized-Bed and Circulating-Bed Biofilm Reactors
  • 12.6 Hybrid Biofilm/Suspended-Growth Processes
  • 12.7 Aerobic Granular-Sludge Processes
  • 12.8 References
  • 12.9 Problems.
  • 13 Nitrogen Transformation and Recovery
  • 13.1 Nitrogen Forms, Effects, and Transformations
  • 13.2 Nitrogen?s Transformation Reactions
  • 13.3 Nitrification
  • 13.3.1 Biochemistry, Physiology, and Kinetics of Nitrifying Bacteria
  • 13.3.2 Common Process Considerations
  • 13.3.3 Activated Sludge Nitrification: Single-Stage versus Separate-Stage
  • 13.3.4 Biofilm Nitrification
  • 13.3.5 Hybrid Processes
  • 13.3.6 The Role of the Input BODL/TKN Ratio
  • 13.4 Denitrification
  • 13.4.1 Physiology of Denitrifying Bacteria
  • 13.4.2 Denitrification Systems
  • 13.4.3 Comparing the Nitrogen-Removal Systems
  • 13.5 Range of Nitrification and Denitrification Systems
  • 13.5.1 Biofilm Reactors
  • 13.5.2 The Barnard Process for Nitrogen Removal
  • 13.5.3 Sequencing Batch Reactor
  • 13.5.4 Side-Stream Anammox Treatment
  • 13.6 Nitrous Oxide Formation
  • 13.7 References
  • 13.8 Problems
  • 14 Phosphorus Removal and Recovery
  • 14.1 Normal Phosphorus Uptake into Biomass
  • 14.2 Precipitation by Metal-Salts Addition to a Biological Process
  • 14.3 Enhanced Biological Phosphorus Removal
  • 14.4 Phosphorus Recovery
  • 14.4.1 Lack of P Removal Opens Up P Recovery
  • 14.4.2 Wastewater as a Direct Source of Fertilizer P
  • 14.4.3 Biomass as a Source of Slow-Release P
  • 14.4.4 Selective Adsorption
  • 14.4.5 Struvite Precipitation
  • 14.5 References
  • 14.6 Problems
  • 15 Biological Treatment of Drinking Water
  • 15.1 Why Biological Treatment of Drinking Water?
  • 15.2 Aerobic Biofilm Processes to Eliminate Biological Instability
  • 15.2.1 General Characteristics of Aerobic Biofilm Processes
  • 15.2.2 Biodegradable Organic Matter (BOM)
  • 15.2.3 Inorganic Instability
  • 15.2.4 Hybrid Biofiltration
  • 15.2.5 Biofilm Pretreatment
  • 15.2.6 Slow Biofiltration
  • 15.2.7 Release of Microorganisms
  • 15.2.8 Biodegradation of Specific Organic Compounds
  • 15.3 Anaerobic Biofilm Processes to Reduce Oxidized Contaminants
  • 15.3.1 Oxidized Contaminants
  • 15.3.2 General Characteristics of Biofilm Processes to Reduce Oxidized Contaminants
  • 15.3.3 Autotrophic Processes
  • 15.3.4 Heterotrophic Processes
  • 15.4 References
  • 15.5 Problems
  • A Free Energies of Formation for Various Chemical Species, 25?C
  • Index.