Cargando…

Environmental Biotechnology : Principles and Applications, Second Edition /

This thoroughly revised educational resource presents the biological principles that underlie modern microbiological treatment technologies. Written by two of the field's foremost researchers, Environmental Biotechnology: Principles and Applications, Second Edition clearly explains the new tech...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Rittmann, Bruce E. (Autor), McCarty, Perry L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2020].
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 MGH_AEACE2020052002
003 IN-ChSCO
005 20200520140429.0
006 m|||||||||||||||||
007 cr |n||||||||n
008 200520s2020||||nyu|||||o|||||||||||eng||
010 |a  2019055165 
020 |a 9781260441611 (e-ISBN) 
020 |a 126044161X (e-ISBN) 
020 |a 9781260441604 (print-ISBN) 
020 |a 1260441601 (print-ISBN) 
035 |a (OCoLC)1129396873 (print ed.) 
040 |a IN-ChSCO  |b eng  |e rda 
041 0 |a eng 
050 4 |a RA566 
072 7 |a TEC  |x 010000   |2 bisacsh 
082 0 4 |a 613/.101579  |2 23 
100 1 |a Rittmann, Bruce E.,   |e author. 
245 1 0 |a Environmental Biotechnology :   |b Principles and Applications, Second Edition /  |c Bruce E. Rittmann, Perry L. McCarty. 
250 |a Second edition. 
264 1 |a New York, N.Y. :   |b McGraw-Hill Education,   |c [2020]. 
264 4 |c ?2020. 
300 |a 1 online resource (841 pages) :   |b 200 illustrations. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Preface -- 1 Moving Toward Sustainability -- 1.1 Water Uses and Resources -- 1.2 Wastewater ?s Resources -- 1.3 Climate Change -- 1.4 Sustainability -- 1.5 The Role of Environmental Biotechnology -- 1.6 Organization of the Book -- 1.7 References -- 2 Basics of Microbiology -- 2.1 The Microbial Cell -- 2.2 Microbial Classification -- 2.3 Prokaryotes -- 2.3.1 Bacterial and Archaeal Cell Structure and Function. -- 2.3.2 Phylogenic Lineages of Bacteria -- 2.3.3 Phylogenic Lineages of Archaea -- 2.4 Eukarya -- 2.4.1 Fungi. -- 2.4.2 Algae. -- 2.4.3 Protozoa -- 2.4.4 Other Multicellular Microorganisms -- 2.5 Viruses -- 2.6 Infectious Disease -- 2.7 References -- 3 Biochemistry, Metabolism, Genetics, and Information Flow -- 3.1 Biochemistry -- 3.1.1 Enzymes -- 3.1.2 Enzyme Reactivity -- 3.1.3 Regulating Enzyme Activity. -- 3.2 Energy Capture -- 3.2.1 Electron and Energy Carriers -- 3.2.2 Energy and Electron Investments. -- 3.3 Metabolism -- 3.3.1 Catabolism -- 3.3.2 Anabolism -- 3.3.3 Metabolism and Trophic Groups. -- 3.4 Genetics and Information Flow -- 3.4.1 Deoxyribonucleic Acid (DNA) -- 3.4.2 The Chromosome. -- 3.4.3 Plasmids. -- 3.4.4 DNA Replication -- 3.4.5 Ribonucleic Acid (RNA). -- 3.4.6 Transcription. -- 3.4.7 Messenger RNA (mRNA) -- 3.4.8 Transfer RNA (tRNA) -- 3.4.9 Translation and the Ribosomal RNA (rRNA) -- 3.4.10 Translation -- 3.4.11 Regulation -- 3.4.12 Phylogeny -- 3.4.13 The Basics of Phylogenetic Classification -- 3.5 References -- 3.6 Bibliography -- 3.7 Problems -- 4 Microbial Ecology -- 4.1 Selection -- 4.2 Exchange of Materials -- 4.2.1 Exchange of Substrates -- 4.2.2 Exchange of Genetic Information -- 4.2.3 Growth Factors -- 4.2.4 Exchange of Chemical Signals -- 4.3 Adaptation -- 4.4 Tools to Study Microbial Ecology -- 4.4.1 Traditional Enrichment Tools -- 4.4.2 Molecular Targets -- 4.4.3 Genomics Methods Based on the Ribosomal RNA -- 4.4.4 Genomics Methods Based on the Ribosomal DNA -- 4.4.5 Diversity Analysis of Genomics Results -- 4.4.6 Functional Genomics Analysis -- 4.4.7 Transcriptomics -- 4.4.8 Proteomics -- 4.4.9 Functional Prediction -- 4.5 References -- 4.6 Bibliography -- 4.7 Problems -- 5 Stoichiometry and Energetics -- 5.1 An Example Stoichiometric Equation -- 5.2 An Empirical Formula for Microbial Cells -- 5.3 Formulations for Cells Containing Storage Products -- 5.4 Substrate Partitioning and Cellular Yield -- 5.5 Overall Reactions for Biological Growth -- 5.6 Fermentation Reactions -- 5.6.1 Simple Fermentation -- 5.6.2 Mixed Fermentation -- 5.7 Energetics of Bacterial Growth -- 5.7.1 Free Energy of the Energy Reaction -- 5.7.2 Microbial Yield Coefficient and Reaction Energetics -- 5.7.3 Oxidized Nitrogen Sources -- 5.8 References -- 5.9 Problems -- 6 Microbial Kinetics -- 6.1 Basic Rate Expressions -- 6.2 Estimating Parameter Values -- 6.3 Basic Mass Balances -- 6.4 Mass Balances on Inert Biomass and Volatile Suspended Solids -- 6.5 Microbial Products -- 6.6 Input of Active Biomass -- 6.7 Nutrients and Electron Acceptors -- 6.8 CSTR Summary Equations -- 6.9 Hydrolysis of Particulate and Polymeric Substrates -- 6.10 Inhibition -- 6.11 Additional Rate Expressions -- 6.12 References -- 6.13 Problems -- 7 Biofilm Kinetics -- 7.1 Microbial Aggregation -- 7.2 Why Do Biofilms Form? -- 7.3 The Idealized Biofilm -- 7.3.1 Substrate Phenomena -- 7.3.2 Illustration for First-Order Kinetics -- 7.3.3 General Solution When Sw Is Known -- 7.3.4 The Biofilm Mass Balance -- 7.4 The Steady-State Biofilm -- 7.5 The Steady-State-Biofilm Solution -- 7.6 Estimating Parameter Values -- 7.7 Average Biofilm SRT -- 7.8 Completely Mixed Biofilm Reactor -- 7.9 Inert Biomass, Nutrients, and Electron Acceptor -- 7.10 Trends in CMBR Performance -- 7.11 Normalized Surface Loading -- 7.12 Nonsteady-State Biofilms -- 7.13 Special-Case Biofilm Solutions -- 7.13.1 Deep Biofilms -- 7.13.2 Zero-Order Kinetics -- 7.14 Numerical Modeling of Biofilms -- 7.15 References -- 7.16 Problems. 
505 0 |a 8 Microbial Products -- 8.1 Extracellular Polymeric Substances -- 8.2 Soluble Microbial Products -- 8.3 Steady-State Model Including EPS and SMP -- 8.4 Relating EPS and SMP to Aggregate Parameters -- 8.5 Nutrient-Uptake and Acceptor-Utilization Rates -- 8.6 Parameter Values -- 8.7 Modeling EPS, SMP, and Xin for a Biofilm Process -- 8.8 Intracellular Storage Products (ISP -- 8.9 References -- 8.10 Problems -- 9 Reactor Characteristics and Kinetics -- 9.1 Reactor Types -- 9.1.1 Suspended-Growth Reactors -- 9.1.2 Biofilm Reactors -- 9.1.3 Membrane Bioreactors (MBRs) -- 9.1.4 Biofilm Reactors with Active Substrata -- 9.1.5 Reactor Arrangements -- 9.2 Important Factors in the Engineering Design of Reactors -- 9.2.1 Selecting an Appropriate SF for Design -- 9.2.2 Effect of SF on System Efficiency for Simple Substrates -- 9.2.3 Design When Biosolids Settling or Other Factors Are Critical -- 9.3 Mass Balances -- 9.3.1 Batch Reactor -- 9.3.2 Continuous-Flow Stirred-Tank Reactor with Effluent Recycle. -- 9.3.3 Plug-Flow Reactor -- 9.3.4 Plug-Flow Reactor with Effluent Recycle -- 9.3.5 Plug-Flow Reactor with Settling and Cell Recycle -- 9.4 Alternative Rate Models -- 9.5 Linking Stoichiometric and Mass Balance Equations -- 9.6 Reactors in Series -- 9.7 References -- 9.8 Bibliography -- 9.9 Problems -- 10 Methanogenesis -- 10.1 Uses of Methanogenic Treatment -- 10.2 Treating Dilute Wastewaters -- 10.2.1 The UASB and AFMB -- 10.2.2 Anaerobic Membrane Bioreactors -- 10.3 Reactor Configurations -- 10.4 Process Chemistry and Microbiology -- 10.4.1 Process Microbiology -- 10.4.2 Process Chemistry -- 10.5 Process Kinetics -- 10.5.1 Temperature Effects -- 10.5.2 Reaction Kinetics for a CSTR -- 10.5.3 Complex Substrates -- 10.5.4 Process Optimization -- 10.5.5 Reaction Kinetics for Biofilm Processes -- 10.5.6 Kinetics with Hydrolysis as Limiting Factor -- 10.6 Special Factors in the Design of Anaerobic Biosolids Digesters -- 10.6.1 Loading Criteria -- 10.6.2 Mixing -- 10.6.3 Heating -- 10.6.4 Gas Collection -- 10.6.5 Performance -- 10.7 Example Designs for Anaerobic Treatment of Dilute Wastewater -- 10.8 References -- 10.9 Problems -- 11 Aerobic Suspended-Growth Processes -- 11.1 Characteristics of Classical Activated Sludge -- 11.1.1 The Basic Activated Sludge Configuration -- 11.1.2 Microbial Ecology -- 11.1.3 Oxygen and Nutrient Requirements -- 11.1.4 Impacts of SRT -- 11.2 Process Configurations -- 11.2.1 Physical Configurations -- 11.2.2 Oxygen-Supply Modifications -- 11.2.3 Loading Modifications -- 11.3 Design and Operating Criteria -- 11.3.1 Historical Background -- 11.3.2 Food-to-Microorganism Ratio -- 11.3.3 Solids Retention Time -- 11.3.4 Comparison of Loading Factors -- 11.3.5 Mixed-Liquor Suspended Solids, the SVI, and the Recycle Ratio -- 11.4 Aeration Systems -- 11.4.1 Oxygen-Transfer and Mixing Rates -- 11.4.2 Diffused Aeration Systems -- 11.4.3 Mechanical Aeration Systems -- 11.5 Bulking and Other Sludge-Settling Problems -- 11.5.1 Bulking Sludge -- 11.5.2 Foaming and Scum Control -- 11.5.3 Rising Sludge -- 11.5.4 Dispersed Growth and Pinpoint Floc -- 11.5.5 Viscous Bulking -- 11.5.6 Addition of Polymers -- 11.6 Activated Sludge Design and Analysis -- 11.7 Analysis and Design of Settlers -- 11.7.1 Activated Sludge Properties -- 11.7.2 Settler Components -- 11.7.3 Loading Criteria -- 11.7.4 Basics of Flux Theory -- 11.7.5 State-Point Analysis -- 11.7.6 Connecting the Settler and Aeration Tank -- 11.7.7 Limitations of State-Point Analysis -- 11.8 Membrane Bioreactors (MBRs -- 11.9 Integrated Fixed-Film Activated Sludge -- 11.10 References -- 11.11 Bibliography -- 11.12 Problems -- 12 Aerobic Biofilm Processes -- 12.1 Biofilm Process Considerations -- 12.2 Trickling Filters and Biological Towers -- 12.3 Rotating Biological Contactors -- 12.4 Granular-Media Filters -- 12.5 Fluidized-Bed and Circulating-Bed Biofilm Reactors -- 12.6 Hybrid Biofilm/Suspended-Growth Processes -- 12.7 Aerobic Granular-Sludge Processes -- 12.8 References -- 12.9 Problems. 
505 0 |a 13 Nitrogen Transformation and Recovery -- 13.1 Nitrogen Forms, Effects, and Transformations -- 13.2 Nitrogen?s Transformation Reactions -- 13.3 Nitrification -- 13.3.1 Biochemistry, Physiology, and Kinetics of Nitrifying Bacteria -- 13.3.2 Common Process Considerations -- 13.3.3 Activated Sludge Nitrification: Single-Stage versus Separate-Stage -- 13.3.4 Biofilm Nitrification -- 13.3.5 Hybrid Processes -- 13.3.6 The Role of the Input BODL/TKN Ratio -- 13.4 Denitrification -- 13.4.1 Physiology of Denitrifying Bacteria -- 13.4.2 Denitrification Systems -- 13.4.3 Comparing the Nitrogen-Removal Systems -- 13.5 Range of Nitrification and Denitrification Systems -- 13.5.1 Biofilm Reactors -- 13.5.2 The Barnard Process for Nitrogen Removal -- 13.5.3 Sequencing Batch Reactor -- 13.5.4 Side-Stream Anammox Treatment -- 13.6 Nitrous Oxide Formation -- 13.7 References -- 13.8 Problems -- 14 Phosphorus Removal and Recovery -- 14.1 Normal Phosphorus Uptake into Biomass -- 14.2 Precipitation by Metal-Salts Addition to a Biological Process -- 14.3 Enhanced Biological Phosphorus Removal -- 14.4 Phosphorus Recovery -- 14.4.1 Lack of P Removal Opens Up P Recovery -- 14.4.2 Wastewater as a Direct Source of Fertilizer P -- 14.4.3 Biomass as a Source of Slow-Release P -- 14.4.4 Selective Adsorption -- 14.4.5 Struvite Precipitation -- 14.5 References -- 14.6 Problems -- 15 Biological Treatment of Drinking Water -- 15.1 Why Biological Treatment of Drinking Water? -- 15.2 Aerobic Biofilm Processes to Eliminate Biological Instability -- 15.2.1 General Characteristics of Aerobic Biofilm Processes -- 15.2.2 Biodegradable Organic Matter (BOM) -- 15.2.3 Inorganic Instability -- 15.2.4 Hybrid Biofiltration -- 15.2.5 Biofilm Pretreatment -- 15.2.6 Slow Biofiltration -- 15.2.7 Release of Microorganisms -- 15.2.8 Biodegradation of Specific Organic Compounds -- 15.3 Anaerobic Biofilm Processes to Reduce Oxidized Contaminants -- 15.3.1 Oxidized Contaminants -- 15.3.2 General Characteristics of Biofilm Processes to Reduce Oxidized Contaminants -- 15.3.3 Autotrophic Processes -- 15.3.4 Heterotrophic Processes -- 15.4 References -- 15.5 Problems -- A Free Energies of Formation for Various Chemical Species, 25?C -- Index. 
520 |a This thoroughly revised educational resource presents the biological principles that underlie modern microbiological treatment technologies. Written by two of the field's foremost researchers, Environmental Biotechnology: Principles and Applications, Second Edition clearly explains the new technologies that have evolved over the past twenty years, including direct anaerobic treatments, membrane-based processes, and granular processes. The first half of the book focuses on theory and tools; the second half offers practical applications that are clearly illustrated through real-world examples. 
530 |a Also available in print edition. 
533 |a Electronic reproduction.   |b New York, N.Y. :   |c McGraw Hill,   |d 2020.   |n Mode of access: World Wide Web.   |n System requirements: Web browser.   |n Access may be restricted to users at subscribing institutions. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 |a Description based on e-Publication PDF. 
650 0 |a Environmental Microbiology. 
650 0 |a Biodegradation, Environmental. 
650 0 |a Bioreactors. 
650 0 |a Biotechnology  |v methods. 
650 0 |a Environmental Health  |v methods. 
655 0 |a Electronic books. 
700 1 |a McCarty, Perry L.,   |e author. 
776 0 |i Print version:   |t Environmental Biotechnology: Principles and Applications, Second Edition,   |d New York, N.Y. : McGraw-Hill Education, [2020].   |z 9781260441604 
856 4 0 |u https://accessengineeringlibrary.uam.elogim.com/content/book/9781260441604  |z Texto completo