Cargando…

Structural Fire Engineering /

"This hands-on guide clearly explains the complicated building codes and standards that relate to fire design. The book presents actionable strategies that engineers can apply to help prevent or mitigate the effects of fire in structures. Written by a pair of internationally recognized experts,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kodur, Venkatesh K.R (Autor), Naser, M.Z (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2020]
Edición:First edition.
Colección:McGraw-Hill's AccessEngineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 MGH_AEACE2020052001
003 IN-ChSCO
005 20210416124538.0
006 m|||||||||||||||||
007 cr |n||||||||n
008 210416s2020||||nyu|||||o|||||||||||eng||
010 |z  2019957426 
020 |a 9781260128598 (e-ISBN) 
020 |a 1260128598 (e-ISBN) 
020 |a 9781260128581 (print-ISBN) 
020 |a 126012858X (print-ISBN) 
035 |a (OCoLC)1155988838 
040 |a IN-ChSCO  |b eng  |e rda 
041 0 |a eng 
050 4 |a TH1065 
072 7 |a TEC  |x 063000  |2 bisacsh 
082 0 4 |a 693.82  |2 23 
100 1 |a Kodur, Venkatesh K.R.,  |e author. 
245 1 0 |a Structural Fire Engineering /  |c Venkatesh K.R. Kodur, M.Z. Naser. 
250 |a First edition. 
264 1 |a New York, N.Y. :  |b McGraw-Hill Education,  |c [2020] 
264 4 |c ?2020 
300 |a 1 online resource (481 pages) :   |b 150 illustrations. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a McGraw-Hill's AccessEngineering 
504 |a Includes bibliographical references and index. 
505 0 |a Preface -- 1 Fire Hazard in Built Infrastructure -- 1.1 Overview -- 1.2 Magnitude of Fire Hazard -- 1.2.1 Fire Problem -- 1.2.2 Fire Statistics -- 1.2.3 Recent Fire Incidents -- 1.3 Strategies to Overcome Fire Hazard. -- 1.4 Structural Fire Safety. -- 1.5 Approaches to Evaluating Fire Resistance -- 1.6 Importance of Structural Fire Safety in Modern Construction. -- 1.7 Layout of the Book -- 1.8 References -- 2 Fire Safety in Buildings -- 2.1 Overview -- 2.2 Design Principles for Structures -- 2.3 Fire Safety in Buildings -- 2.3.1 Fire Scenarios in Buildings. -- 2.3.2 Need for Fire Safety Measures -- 2.4 Strategies to Overcome Fire Hazard. -- 2.4.1 Goals and Objectives -- 2.4.2 Provisions for Fire Safety Features -- 2.5 Codes and Standards. -- 2.5.1 General -- 2.5.2 American Codes and Standards. -- 2.5.3 Canadian Codes and Standards. -- 2.5.4 European Codes: Eurocodes -- 2.5.5 British Codes. -- 2.5.6 Codes and Standards in Other Countries -- 2.5.7 Limitations of Codes and Standards. -- 2.6 Evaluating Fire Resistance -- 2.6.1 Prescriptive Approaches -- 2.6.2 Rational Methods. -- 2.7 Emerging Trends and Research Needs -- 2.7.1 Effect of Situational Awareness in Evacuation under Fire Conditions -- 2.8 References -- 3 Fire Growth and Fire Severity -- 3.1 General. -- 3.2 Heat Transfer Mechanisms -- 3.2.1 Conduction -- 3.2.2 Convection -- 3.2.3 Radiation -- 3.3 Fire and Heat -- 3.3.1 General. -- 3.3.2 Fuel and Ventilation -- 3.4 Fire Development in a Compartment -- 3.4.1 Different Stages of Fire. -- 3.5 Pre-Flashover Fire Calculations -- 3.5.1 T-Squared Fires -- 3.5.2 Heat Release Rate Calculations -- 3.5.3 Temperature Calculations -- 3.6 Flashover Fire Calculations -- 3.7 Post-Flashover Fire Calculations -- 3.7.1 Fuel-Controlled Fire -- 3.7.2 Ventilation-Controlled Fire. -- 3.8 Time-Temperature Relations -- 3.8.1 Standard Fire. -- 3.8.2 Design Fires -- 3.9 Fire Severity. -- 3.9.1 Need for Fire Severity. -- 3.9.2 Methods for Deriving Equivalent Fire Severity -- 3.9.3 Domains for Expressing Fire Severity Equivalence. -- 3.9.4 Estimation of Equivalent Fire Severity -- 3.10 Emerging Trends and Research Needs -- 3.10.1 Traveling Fires -- 3.10.2 Fire Models for Realistic Fire Representation. -- 3.11 References -- 3.12 Nomenclature -- 3.13 Numerical Examples. -- 4 Properties of Materials at Elevated Temperatures -- 4.1 Overview -- 4.2 Characteristics of Building Materials -- 4.2.1 Classification. -- 4.2.2 Porosity and Moisture Sorption. -- 4.2.3 Survey of Construction Materials -- 4.3 Material Properties at Elevated Temperatures -- 4.3.1 Thermal Properties -- 4.3.2 Mechanical Properties. -- 4.3.3 Deformational Properties -- 4.3.4 Material-Specific (Special) Properties -- 4.4 Properties of Building Materials -- 4.4.1 Concrete. -- 4.4.2 Steel. -- 4.4.3 Wood -- 4.4.4 Masonry and Brick -- 4.4.5 FRP Composites -- 4.4.6 Gypsum -- 4.4.7 Insulation -- 4.5 Emerging Trends and Research Needs -- 4.5.1 Property Characterization at Elevated Temperature -- 4.5.2 Development of Standardized Testing Procedure and Equipment -- 4.6 References -- 4.7 Nomenclature -- 5 Fire Resistance Evaluation through Testing -- 5.1 Overview -- 5.2 Standardized Test Methods -- 5.2.1 Overview of Fire Tests -- 5.2.2 Evolution of Fire Testing Standards -- 5.2.3 Current Standards for Fire Resistance Tests -- 5.3 Procedure for Undertaking Standard Fire Resistance Tests -- 5.3.1 Fire Test Furnace -- 5.3.2 Placement and Boundary Conditions of Test Specimens -- 5.3.3 Fire Exposure -- 5.3.4 Loading -- 5.3.5 Failure Criterion -- 5.3.6 Reporting of Test Results -- 5.4 Measured Results in Fire Tests -- 5.4.1 Proprietary Ratings -- 5.4.2 Generic Fire Data -- 5.5 Limitations of Standard Fire Resistance Tests -- 5.6 Extension Principles -- 5.6.1 Extension Principles Based on Material Properties -- 5.6.2 Extension Principles Based on Member Dimensions -- 5.6.3 Harmathy?s 10 Rules for Fire Resistance -- 5.7 Resistance Evaluation under Nonstandard Fire Conditions -- 5.8 Fire Resistance of Nonstructural Members -- 5.9 Emerging Trends and Research Needs -- 5.9.1 Hybrid Fire Testing -- 5.9.2 Modernizing Testing Procedures and Standardization -- 5.9.3 Instrumentation -- 5.10 References -- 5.11 Nomenclature -- 5.12 Numerical Examples. 
505 0 |a 6 Fire Resistance Evaluation through Calculation Methods -- 6.1 Overview -- 6.2 Prescriptive Approaches -- 6.2.1 Listings -- 6.2.2 Correlation or Empirical Methods -- 6.3 Rational Engineering Approaches -- 6.3.1 Simplified Approaches -- 6.3.2 Advanced Analyses -- 6.4 Detailed Steps for Advanced Analysis -- 6.4.1 General -- 6.4.2 Analysis Procedure -- 6.4.3 Heat Transfer Calculations -- 6.4.4 Strength Calculations -- 6.4.5 Failure Limit States -- 6.4.6 Critical Parameters to Be Considered in Advanced Analysis -- 6.4.7 Case Study -- 6.5 Emerging Trends and Research Needs -- 6.5.1 Computer Software for Advanced Analysis -- 6.5.2 Input Parameters for Analysis -- 6.6 References -- 6.7 Nomenclature -- 6.8 Numerical Examples -- 7 Steel Structures -- 7.1 Overview -- 7.2 Properties at Elevated Temperature -- 7.2.1 General -- 7.2.2 Property Relations for Steel -- 7.2.3 Property Relations for Fire Insulation -- 7.3 Behavior of Steel Structures under Fire Exposure -- 7.4 Strategies for Achieving Required Fire Resistance -- 7.4.1 General -- 7.4.2 Strategies for Enhancing Fire Resistance -- 7.5 Prescriptive-Based Approaches for Evaluating Fire Resistance -- 7.5.1 Testing -- 7.5.2 Correlation Methods -- 7.6 Rational Approaches for Evaluating Fire Resistance -- 7.6.1 Simplified Approaches -- 7.6.2 Advanced Analysis -- 7.7 Emerging Trends and Research Needs -- 7.7.1 High-Temperature Creep Effects -- 7.7.2 Temperature-Induced Instability -- 7.7.3 Properties of Specialized Steels -- 7.8 References -- 7.9 Nomenclature -- 7.10 Numerical Examples -- 8 Concrete Structures -- 8.1 Overview -- 8.2 Properties of Concrete and Steel Reinforcement at Elevated Temperature -- 8.2.1 General -- 8.2.2 Effect of Temperature on Properties -- 8.2.3 High-Temperature Property Relations of Concrete -- 8.2.4 High-Temperature Property Relations of Steel Reinforcement -- 8.2.5 High-Temperature Property Relations of FRP Reinforcement -- 8.3 Behavior of Concrete Structures under Fire Exposure -- 8.4 Strategies for Achieving Required Fire Resistance -- 8.5 Methods for Evaluating Fire Resistance -- 8.6 Prescriptive-Based Approaches for Evaluating Fire Resistance -- 8.6.1 Tabulated Data -- 8.6.2 Correlation Equations -- 8.7 Rational Approaches for Evaluating Fire Resistance -- 8.7.1 General Procedure -- 8.7.2 Simplified Approaches -- 8.7.3 Advanced Analysis -- 8.8 Strategies for Enhancing Fire Resistance of High-Strength Concrete Members -- 8.8.1 Factors Influencing Spalling -- 8.8.2 Guidance for Minimizing Spalling -- 8.9 Masonry Structures -- 8.10 Emerging Trends and Research Needs -- 8.10.1 Predictive Spalling Models -- 8.10.2 Temperature-Dependent Property Data for Newer Concrete Types -- 8.11 References -- 8.12 Nomenclature -- 8.13 Numerical Examples -- 9 Composite Structures -- 9.1 Overview -- 9.2 Composite Construction -- 9.3 Material Properties at Elevated Temperatures -- 9.4 Behavior of Composite Structures under Fire Conditions -- 9.5 Strategies for Achieving Fire Resistance -- 9.6 Prescriptive Approaches for Evaluating Fire Resistance -- 9.6.1 Testing -- 9.6.2 Tabulated Data -- 9.6.3 Empirical Equations -- 9.7 Rational Approaches for Evaluating Fire Resistance -- 9.7.1 Simplified Approaches -- 9.7.2 Advanced Analysis -- 9.8 Emerging Trends and Research Needs -- 9.8.1 Tensile Membrane Action -- 9.8.2 Enhancing Fire Resiliency through Composite Construction -- 9.9 References -- 9.10 Numerical Examples -- 10 Timber Structures -- 10.1 Overview -- 10.2 Properties of Timber -- 10.2.1 Properties at Ambient Conditions -- 10.2.2 Properties at Elevated Temperature -- 10.2.3 Charring Phenomenon -- 10.3 Behavior of Timber Structures under Fire -- 10.4 Strategies for Achieving Required Fire Resistance -- 10.4.1 Connections -- 10.5 Prescriptive-Based Approaches for Evaluating Fire Resistance -- 10.5.1 Heavyweight Construction -- 10.5.2 Lightweight Construction -- 10.6 Rational Approaches for Evaluating Fire Resistance -- 10.6.1 General Analysis Procedure -- 10.6.2 Simplified Approaches -- 10.6.3 Advanced Analysis -- 10.7 Emerging Trends and Research Needs -- 10.7.1 High-Temperature Properties of Engineered Wood -- 10.7.2 Calculation Approaches for Fire Resistance Evaluation -- 10.8 References -- 10.9 Numerical Examples. 
505 0 |a 11 Concrete Structures Strengthened with Fiber-Reinforced Polymer Composites -- 11.1 Overview -- 11.2 Strengthening of Structures -- 11.2.1 General -- 11.2.2 Type of Strengthening -- 11.2.3 FRP Materials -- 11.2.4 Need for Fire Resistance -- 11.3 Property Relations for FRP at Elevated Temperatures -- 11.3.1 Thermal Properties -- 11.3.2 Mechanical Properties -- 11.3.3 Bond Properties -- 11.3.4 Deformational Properties -- 11.4 Behavior of FRP-Strengthened Concrete Members under Fire Exposure -- 11.5 Strategies for Achieving Required Fire Resistance -- 11.6 Prescriptive-Based Approach for Evaluating Fire Resistance -- 11.7 Rational Approaches for Evaluating Fire Resistance -- 11.7.1 Simplified Approaches -- 11.7.2 Advanced Analysis -- 11.8 Guidelines for Enhancing Fire Resistance of FRP-Strengthened Concrete Members -- 11.8.1 Factors Governing Fire Resistance -- 11.8.2 Guidelines for Enhancing Fire Resistance -- 11.9 Emerging Trends and Research Needs -- 11.9.1 Fire-Resistant FRP Materials -- 11.9.2 Simplified Approaches for Fire Resistance Evaluation -- 11.10 References -- 11.11 Nomenclature -- 11.12 Numerical Examples -- 12 Transportation Structures -- 12.1 Overview -- 12.2 Fire Problems in Bridges and Tunnels -- 12.2.1 General -- 12.2.2 Causes of Fires -- 12.2.3 Magnitude of Fire Problems -- 12.2.4 Illustrations of Typical Bridge and Tunnel Fires -- 12.2.5 The Need for Fire Resistance -- 12.2.6 Current Fire Mitigation Provisions for Bridges and Tunnels -- 12.2.7 Complexities in Applying Conventional Fire Resistance Provisions -- 12.3 Strategies for Enhancing Fire Safety -- 12.3.1 Identifying Factors Governing Vulnerability to Fire Hazard -- 12.3.2 Developing Strategies for Enhancing Fire Resistance -- 12.4 Approach for Evaluating Fire Resistance of Bridge Structures -- 12.4.1 General Procedure -- 12.4.2 Evaluating Fire Risk (Step 1) -- 12.4.3 Fire Resistance Analysis (Step 2) -- 12.4.4 Deriving Optimum Fire Protection Strategies (Steps 3, 4, and 5) -- 12.4.5 Illustration of Proposed Approach for Fire Resistance -- 12.5 Strategies for Mitigating Fire Hazard in Tunnels -- 12.6 Emerging Trends and Research Needs -- 12.6.1 Numerical Models for Evaluating Fire Resistance -- 12.6.2 Post-Fire Residual Capacity Assessment and Repair Strategies -- 12.7 References -- 12.8 Nomenclature -- 12.9 Numerical Examples. 
505 0 |a 13 Residual Capacity of Fire-Damaged Structures -- 13.1 Overview -- 13.2 Importance of Residual Capacity -- 13.3 Residual Material Properties after High-Temperature Exposure -- 13.3.1 Concrete -- 13.3.2 Structural Steel, Reinforcing Steel, and Prestressing Steel -- 13.3.3 Masonry -- 13.3.4 Timber -- 13.4 Residual Behavior of Fire-Exposed Structures -- 13.4.1 Typical Post-Fire Behavior of a Structural Member -- 13.4.2 Factors Governing Residual Capacity -- 13.5 Conditional Assessment of Fire-Damaged Structures -- 13.5.1 Damage Classification -- 13.5.2 Concrete and Masonry Structures -- 13.5.3 Steel Structures -- 13.5.4 Timber Structures -- 13.6 Calculation Approaches for Evaluating Residual Capacity -- 13.6.1 Simplified Approaches -- 13.6.2 Advanced Analysis -- 13.6.3 Illustration of Advanced Analysis -- 13.7 Repair Strategies -- 13.7.1 Concrete Structures -- 13.7.2 Steel Structures -- 13.7.3 Timber Structures -- 13.8 Emerging Trends and Future Needs -- 13.8.1 Reliable Approaches for Residual Capacity Assessment -- 13.8.2 Sensing Techniques for Continual Assessment During or Following a Fire -- 13.9 References -- 13.10 Nomenclature -- 13.11 Numerical Examples -- Index. 
520 0 |a "This hands-on guide clearly explains the complicated building codes and standards that relate to fire design. The book presents actionable strategies that engineers can apply to help prevent or mitigate the effects of fire in structures. Written by a pair of internationally recognized experts, Structural Fire Engineering covers all of the current fire design requirements of the IBC, IFC, NFPA Fire Code, and National Building Code of Canada. You will get step-by-step instruction on performing fire resistance evaluation using both testing and calculation methods."--Publisher's description. 
530 |a Also available in print edition. 
533 |a Electronic reproduction.  |b New York, N.Y. :  |c McGraw Hill,   |d 2020.  |n Mode of access: World Wide Web.  |n System requirements: Web browser.  |n Access may be restricted to users at subscribing institutions. 
538 |a Mode of access: Internet via World Wide Web. 
546 |a In English. 
588 |a Description based on e-Publication PDF. 
650 0 |a Building, Fireproof. 
650 0 |a Fire protection engineering. 
655 0 |a Electronic books. 
700 1 |a Naser, M.Z.,  |e author. 
776 0 |i Print version:   |t Structural Fire Engineering.  |b First edition.  |d New York, N.Y. : McGraw-Hill Education, 2020  |w (OCoLC)1110662000 
830 0 |a McGraw-Hill's AccessEngineering. 
856 4 0 |u https://accessengineeringlibrary.uam.elogim.com/content/book/9781260128581  |z Texto completo