|
|
|
|
LEADER |
00000nam a2200000 i 4500 |
001 |
MGH_AE9781264268238 |
003 |
IN-ChSCO |
005 |
20230823121150.0 |
006 |
m||||||||||||||||| |
007 |
cr |n||||||||n |
008 |
230823s2023||||nyu|||||o|||||||||||eng|| |
020 |
|
|
|a 9781264268238 (e-ISBN)
|
020 |
|
|
|a 1264268238 (e-ISBN)
|
020 |
|
|
|z 9781264268221 (print-ISBN)
|
020 |
|
|
|z 126426822X (print-ISBN)
|
035 |
|
|
|a (OCoLC)1389808343
|
040 |
|
|
|a IN-ChSCO
|b eng
|e rda
|
041 |
0 |
|
|a eng
|
050 |
|
4 |
|a TP156.T7
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 660.6
|2 23
|
100 |
1 |
|
|a Kolar, Praveen,
|e author.
|
245 |
1 |
0 |
|a Transport Phenomena for Biological and Agricultural Engineers :
|b A Problem-Based Approach /
|c Praveen Kolar.
|
250 |
|
|
|a First edition.
|
264 |
|
1 |
|a New York, N.Y. :
|b McGraw Hill LLC,
|c [2023]
|
264 |
|
4 |
|c ?2023
|
300 |
|
|
|a 1 online resource (352 pages) :
|b 200 illustrations.
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
490 |
1 |
|
|a McGraw-Hill's AccessEngineeringLibrary
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright Page -- Dedication -- Contents at a Glance -- Contents -- Preface -- Acknowledgments -- 1 Modes of Heat Transfer -- Chapter Objectives -- 1.1 Motivation -- 1.2 Conduction -- 1.3 Mathematical Description of Conduction?Fourier?s Law -- 1.4 The Interpretation of the Negative Sign -- 1.5 The Concept of Thermal Conductivity -- 1.6 Convection -- 1.7 Mathematical Description of Convection?Newton?s Law of Cooling -- 1.8 The Concept of Heat Transfer Coefficient (h) -- 1.9 Radiation -- 1.10 Mathematical Description of Radiation?The Stefan?Boltzmann Law -- 1.11 The Concept of Emissivity (e) -- 1.12 Multimodal Heat Transfer -- 1.13 Heat Transfer Nomenclature -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 2 Conduction Heat Transfer -- Chapter Objectives -- 2.1 Motivation -- 2.2 The Concept of Thermal Diffusivity (a) -- 2.3 Derivation of Three-Dimensional Heat Conduction Equation in Rectangular Coordinate System -- 2.4 Applications of Heat Conduction Equations -- 2.5 Derivation of Three-Dimensional Heat Conduction Equation in Spherical Coordinate System -- 2.6 Derivation of Three-Dimensional Heat Conduction Equation in Cylindrical Coordinate System -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 3 Steady-State Conduction Heat Transfer -- Chapter Objectives -- 3.1 Motivation -- 3.2 One-Dimensional Steady-State Conduction in Simple Geometries -- 3.3 Similarity with Flow of Electricity -- 3.4 Heat Transfer in Composite Sections in Series -- 3.5 Heat Transfer in Composite Sections in Parallel -- 3.6 Heat Transfer in Composite Sections in Series and Parallel -- 3.7 Heat Transfer in Composite Spherical and Cylindrical Bodies -- 3.8 Controlling Heat Transfer via Insulation -- 3.9 Critical Radius of Insulation -- 3.10 Applications of Numerical Methods in Steady-State Transfer -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 4 Unsteady-State Conduction -- Chapter Objectives -- 4.1 Motivation -- 4.2 Solving the Unsteady-State Heat Conduction Problems -- 4.3 The Lumped Approach -- 4.4 Mathematical Analysis of the Lumped Approach -- 4.5 The Concept of Biot Number -- 4.6 Validity of the Lumped Approach -- 4.7 What Happens When the Biot Number Exceeds 0.1? -- 4.8 Graphical Approach -- 4.9 Procedure for Using Heisler?Gr?ber Plots for Solving One-Dimensional Unsteady-State Heat Transfer Problems -- 4.10 One-Dimensional Unsteady-State Heat Transfer in Semi-Infinite Bodies -- 4.11 Two-Dimensional Unsteady-State Heat Transfer in Finite-Sized Bodies -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 5 Fundamentals of Convection Heat Transfer -- Chapter Objectives -- 5.1 Motivation -- 5.2 The Concept of Convection Heat Transfer -- 5.3 Quantifying Convection Heat Transfer -- 5.4 Nusselt Number -- 5.5 Physical Meaning of Nusselt Number -- 5.6 Nusselt Number Versus Biot Number -- 5.7 Relationship with Fluid Mechanics -- 5.8 Physical Meaning of Reynolds Number -- 5.9 Boundary Layer Formation in Convection Heat Transfer -- 5.10 Prandtl Number (NPr) -- 5.11 Physical Meaning of Prandtl Number -- 5.12 Free and Forced Convection -- 5.13 Grashof Number (NGr) -- 5.14 Determining Heat Transfer Coefficients -- 5.15 Heat Transfer Coefficient for Free Convection -- 5.16 Heat Transfer Coefficients for Free Convection for Flow over a Vertical Plate and Cylinder (Characteristic Length = Length of the Cylinder) -- 5.17 Heat Transfer Coefficients for Flow over a Sphere and Cylinder -- 5.18 Heat Transfer Coefficient for Forced Convection -- 5.19 Internal Flow in Circular and Noncircular Pipes -- 5.20 External Flow over Flat Plates -- 5.21 Flow over a Sphere -- 5.22 Flow over a Cylinder -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 6 Design and Analysis of Heat Exchangers -- Chapter Objectives -- 6.1 Motivation -- 6.2 The Principles of Heat Exchanger -- 6.3 Common Recuperative Heat Exchanger Configurations Counter-Flow Heat Exchanger (CFHXs) -- 6.4 Overall Heat Transfer Coefficient -- 6.5 Governing Equations -- 6.6 Approach 1?The Log Mean Temperature Difference (LMTD) Method -- 6.7 The LMTD Method for Parallel-Flow Heat Exchangers -- 6.8 Approach 2?The Effectiveness-Number of Transfer Units (e -NTU) Method -- 6.9 The e-NTU Method for a PFHX -- 6.10 Special Cases -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 7 Elements of Thermal Radiation -- Chapter Objectives -- 7.1 Motivation -- 7.2 Understanding Thermal Radiation -- 7.3 Thermal Radiation and the Electromagnetic Spectrum -- 7.4 The Concept of Blackbody Thermal Radiation -- 7.5 Radiation from a Real Body -- 7.6 Spectral Blackbody Emissive Power -- 7.7 Total Blackbody Emissive Power -- 7.8 Wien?s Law -- 7.9 Blackbody Radiation Fraction Function -- 7.10 Energy Balance in Radiation -- 7.11 Radiation Intensity -- 7.12 Kirchhoff?s Law of Radiation -- 7.13 Radiosity -- 7.14 Radiation between Surfaces: General Analysis -- 7.15 The Concept of View Factors -- 7.16 Heat Transfer between Two Surfaces -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 8 Fundamentals of Fluid Flow -- Chapter Objectives -- 8.1 Motivation -- 8.2 Viscosity -- 8.3 Pressure (P) -- 8.4 Flow Velocity (v) -- 8.5 Volumetric Flow Rate (Q) -- 8.6 Mass Flow Rate (m) -- 8.7 Fluid Flow Regimes -- 8.8 The Continuity Equation -- 8.9 The Energy Equation -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 9 Fluid Flow through Pipes -- Chapter Objectives -- 9.1 Motivation -- 9.2 Laminar Flow through Pipes -- 9.3 Shear Stress Distribution -- 9.4 Pressure Drop in Pipes (Major Losses) -- 9.5 Pumping Power -- 9.6 Turbulent Flow through Pipes -- 9.7 Minor Losses -- 9.8 Flow through Pipes in Series and Parallel -- 9.9 Equivalent Pipe -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 10 Pumps and Fans -- Chapter Objectives -- 10.1 Motivation -- 10.2 Fluid Moving Equipment -- 10.3 Centrifugal Pump -- 10.4 Axial Pump -- 10.5 Pump Specific Speed -- 10.6 Matching a Pump for a Given System -- 10.7 Pump System Curve -- 10.8 Pump Matching and Selection -- 10.9 Net Positive Suction Head (NPSH) -- 10.10 Scaling of Pumps -- 10.11 Pumps in Series and Parallel -- 10.12 Multistage Pumps -- 10.13 Reciprocating Pumps -- 10.14 Discharge, Power, and Slip -- 10.15 Double Acting Reciprocating Pump -- 10.16 Airlift Pumps -- 10.17 Fans -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 11 Fundamentals of Mass Transfer -- Chapter Objectives -- 11.1 Motivation -- 11.2 Mathematical Description of Mass Transfer (Fick?s Law of Diffusion) -- 11.3 The Concept of Mass Diffusivity (D) -- 11.4 Similarity with Heat Transfer -- 11.5 One-Dimensional Steady-State Diffusional Mass Transfer -- 11.6 Mass Transfer through Spherical Section -- 11.7 Mass Transfer through Cylindrical Section -- 11.8 One-Dimensional Mass Transfer through Composite Sections -- 11.9 One-Dimensional Unsteady-State Mass Transfer -- 11.10 Convection Mass Transfer -- 11.11 The Concept of the Mass Transfer Coefficient (hm) -- 11.12 Schmidt Number (Nsc) -- 11.13 Sherwood Number (Nsh) -- 11.14 Determination of Mass Transfer Coefficient (hm) -- 11.15 Similarity with Convection Heat Transfer -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 12 Introduction to Psychrometrics -- Chapter Objectives -- 12.1 Motivation -- 12.2 Introduction -- 12.3 Humidity -- 12.4 Saturated Pressure (Psat) -- 12.5 Specific Volume (Vs) -- 12.6 Enthalpy of Air?Vapor Mixture (h) -- 12.7 Temperature -- 12.8 The Psychrometric Chart -- 12.9 Energy Requirement for Heating of Air -- 12.10 Cooling with Dehumidification -- 12.11 Analysis of Air?Vapor Mixtures -- 12.12 Drying -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 13 Principles of Drying -- Chapter Objectives -- 13.1 Motivation -- 13.2 Introduction -- 13.3 Moisture Content -- 13.4 Water Activity (aw) -- 13.5 Use of Psychrometric Charts Analyzing Drying Processes -- 13.6 The Mechanism of Drying -- 13.7 Rate of Drying -- 13.8 Moisture Adsorption?Desorption Isotherm -- 13.9 Determination of Drying Rate -- 13.10 Determination of Drying Time -- 13.11 Drying Equipment -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 14 Fundamentals of Refrigeration -- Chapter Objectives -- 14.1 Motivation -- 14.2 The Concept of
|
505 |
0 |
|
|a Refrigeration -- 14.3 Refrigerants -- 14.4 Refrigeration Cycle -- 14.5 Quantifying Refrigeration Capacity -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- 15 Introduction to Adsorption -- Chapter Objectives -- 15.1 Motivation -- 15.2 Introduction -- 15.2 Factors Affecting Adsorption -- 15.3 Quantitative Analysis of Adsorption -- 15.4 Adsorption Isotherms -- 15.5 Freundlich Adsorption Isotherm -- 15.6 Brunauer?Emmett?Teller (BET) Adsorption Isotherm -- 15.7 Design of Batch Adsorption Systems Using Adsorption Isotherm Data -- 15.8 Kinetic Analysis of the Adsorption Data -- 15.9 Adsorption Thermodynamics -- 15.10 Column Adsorption -- 15.11 Kinetic Modeling of Column Adsorption -- Practice Problems for the FE Exam -- Practice Problems for the PE Exam -- References -- Index.
|
530 |
|
|
|a Also available in print and PDF edition.
|
533 |
|
|
|a Electronic reproduction.
|b New York, N.Y. :
|c McGraw Hill,
|d 2023.
|n Mode of access: World Wide Web.
|n System requirements: Web browser.
|n Access may be restricted to users at subscribing institutions.
|
538 |
|
|
|a Mode of access: Internet via World Wide Web.
|
546 |
|
|
|a In English.
|
588 |
|
|
|a Description based on e-Publication PDF.
|
650 |
|
0 |
|a Transport theory.
|
650 |
|
0 |
|a Agricultural engineering.
|
650 |
|
0 |
|a Bioengineering.
|
655 |
|
0 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|t Transport Phenomena for Biological and Agricultural Engineers : A Problem-Based Approach.
|b First edition.
|d New York, N.Y. : McGraw-Hill Education, 2023
|z 9781264268221
|w (DLC) 2023010085
|w (OCoLC)1367852960
|
830 |
|
0 |
|a McGraw-Hill's AccessEngineeringLibrary.
|
856 |
4 |
0 |
|u https://accessengineeringlibrary.uam.elogim.com/content/book/9781264268221
|z Texto completo
|