Cargando…

Finite Element Methods Problem 3.12 Part 2 : Approximating the solution of a differential equation via the finite element method /

This video begins from the weighted integral statement and employs integration by parts to redistribute the derivatives between the approximate solution and the weighting functions. This integration by parts also allows us to identify the primary and secondary variables, as well as enforce the boun...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jones, Simon
Formato: Electrónico Video
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education LLC., c2022.
Colección:McGraw-Hill's AccessEngineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000ngm a22000001i 4500
001 MGH_AE6316669152112
003 IN-ChSCO
005 20221222153829.0
006 m|o|c|||||||||||||
007 cr|una---unuuu
007 vz|uzazuu
008 221222s2022||||nyu|||||o|||||||||v|eng|d
028 4 2 |a 6316669152112  |b McGraw-Hill Education LLC 
040 |a IN-ChSCO  |b eng  |e rda 
041 0 |a eng 
046 |k 2022 
050 4 |a TA347.F5 
082 0 4 |a 620.0015  |2 23 
100 1 |a Jones, Simon.  |u Associate Professor of Mechanical Engineering, Rose-Hulman Institute of Technology. 
245 1 0 |a Finite Element Methods Problem 3.12 Part 2 :  |b Approximating the solution of a differential equation via the finite element method /  |c Simon Jones. 
264 1 |a New York, N.Y. :  |b McGraw-Hill Education LLC.,  |c c2022. 
300 |a 1 online resource (1 video file, approximately 9 mins. 27 secs.):  |b digital, .flv file, sound. 
306 |a 000927 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |3 internet archive  |a online resource  |b cr  |2 rdacarrier 
344 |a digital 
347 |a video file  |b MPEG-4  |b Flash 
490 1 |a McGraw-Hill's AccessEngineering 
500 |a Title from title frames. 
520 |a This video begins from the weighted integral statement and employs integration by parts to redistribute the derivatives between the approximate solution and the weighting functions. This integration by parts also allows us to identify the primary and secondary variables, as well as enforce the boundary conditions for the differnential equation. The resulting approximation of the original differential equation is known as the weak form. 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Flash Player. 
546 |a In English. 
588 |a Description based on online resource; title from title screen (Internet Archive, viewed December 22, 2022) 
650 0 |a Finite element method. 
650 0 |a Differential equations. 
655 7 |a Internet videos  |2 lcgft 
710 1 |a McGraw-Hill Education LLC.  |e publisher. 
773 0 |t Introduction to the Finite Element Method, 4th Edition.  |d New York, N.Y. : McGraw-Hill Education, 2022  |z 9781259861901 
830 0 |a McGraw-Hill's AccessEngineering. 
856 4 0 |u https://accessengineeringlibrary.uam.elogim.com/content/video/V6316669152112  |z Texto completo