Cargando…

Finite Element Methods Problem 3.12 Part 3 : Approximating the solution of a differential equation via the finite element method /

This video continues by discretizing the weak form into finite elements by explicitly choosing approximation functions and weighting functions: Lagrange polynomial interpolation functions are used. After substitution of these functions the equations are simplified into matrix-vector form and the typ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jones, Simon
Formato: Electrónico Video
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education LLC., c2022.
Colección:McGraw-Hill's AccessEngineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000ngm a22000001i 4500
001 MGH_AE6316669064112
003 IN-ChSCO
005 20221222153829.0
006 m|o|c|||||||||||||
007 cr|una---unuuu
007 vz|uzazuu
008 221222s2022||||nyu|||||o|||||||||v|eng|d
028 4 2 |a 6316669064112  |b McGraw-Hill Education LLC 
040 |a IN-ChSCO  |b eng  |e rda 
041 0 |a eng 
046 |k 2022 
050 4 |a TA347.F5 
082 0 4 |a 620.0015  |2 23 
100 1 |a Jones, Simon.  |u Associate Professor of Mechanical Engineering, Rose-Hulman Institute of Technology. 
245 1 0 |a Finite Element Methods Problem 3.12 Part 3 :  |b Approximating the solution of a differential equation via the finite element method /  |c Simon Jones. 
264 1 |a New York, N.Y. :  |b McGraw-Hill Education LLC.,  |c c2022. 
300 |a 1 online resource (1 video file, approximately 15 mins. 46 secs.):  |b digital, .flv file, sound. 
306 |a 001546 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |3 internet archive  |a online resource  |b cr  |2 rdacarrier 
344 |a digital 
347 |a video file  |b MPEG-4  |b Flash 
490 1 |a McGraw-Hill's AccessEngineering 
500 |a Title from title frames. 
520 |a This video continues by discretizing the weak form into finite elements by explicitly choosing approximation functions and weighting functions: Lagrange polynomial interpolation functions are used. After substitution of these functions the equations are simplified into matrix-vector form and the typical finite element components are identified (e.g. stiffness matrix, forcing vector, etc.). 
538 |a Mode of access: World Wide Web. 
538 |a System requirements: Adobe Flash Player. 
546 |a In English. 
588 |a Description based on online resource; title from title screen (Internet Archive, viewed December 22, 2022) 
650 0 |a Finite element method. 
650 0 |a Differential equations. 
655 7 |a Internet videos  |2 lcgft 
710 1 |a McGraw-Hill Education LLC.  |e publisher. 
773 0 |t Introduction to the Finite Element Method, 4th Edition.  |d New York, N.Y. : McGraw-Hill Education, 2022  |z 9781259861901 
830 0 |a McGraw-Hill's AccessEngineering. 
856 4 0 |u https://accessengineeringlibrary.uam.elogim.com/content/video/V6316669064112  |z Texto completo