Cargando…

Intelligent Control of Medium and High Power Converters

Power converters are vital for clean power, and so is their control. This book covers recent advances in converter control, comparing control methods for different converters. Chapters present control of DC-DC and AC-DC converters, for example using sliding mode and robust control.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bendaoud, Mohamed
Otros Autores: Maleh, Yassine, Padmanaban, Sanjeevikumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Stevenage : Institution of Engineering & Technology, 2023.
Colección:IET energy engineering series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title
  • Copyright
  • Contents
  • About the editors
  • Preface
  • 1 Power electronics converters-an overview
  • 1.1 Introduction
  • 1.2 DC-DC converters
  • 1.2.1 Non-isolated DC-DC converters
  • 1.2.2 Isolated DC-DC converters
  • 1.2.3 Resonant converters
  • 1.3 DC-AC converters
  • 1.3.1 Two-level single-phase and three-phase inverters
  • 1.3.2 Classification of two-level three-phase inverters
  • 1.3.3 Multilevel inverters
  • 1.3.4 Review of a novel proposed MLIs
  • 1.4 Conclusion
  • References
  • 2 Sliding mode control of bidirectional DC-DC converter for EVs
  • 2.1 Introduction
  • 2.2 Sliding mode control of bidirectional DC-DC converter
  • 2.2.1 Modeling of the converter
  • 2.2.2 Choice of sliding surface
  • 2.2.3 Derivation of control law
  • 2.2.4 Derivation of existence and stability conditions
  • 2.2.5 Sliding mode parameter selection using HHO algorithm
  • 2.3 Simulation and experimental verifications
  • 2.4 Conclusion
  • References
  • 3 High-gain DC-DC converter with extremum seeking control for PV application
  • 3.1 Introduction
  • 3.2 System description
  • 3.2.1 Photovoltaic array
  • 3.2.2 Suggested high-gain DC-DC converter
  • 3.3 Proposed AESC technique
  • 3.3.1 Line search-based optimization methods
  • 3.3.2 Control scheme
  • 3.3.3 Extremum seeking control approach
  • 3.3.4 Convergence analysis of the AESC approach
  • 3.4 Simulation and comparison results
  • 3.4.1 Scenario 1
  • 3.4.2 Scenario 2
  • 3.5 Conclusion
  • References
  • 4 A control scheme to optimize efficiency of GaN-based DC-DC converters
  • 4.1 Introduction
  • 4.2 Proposed control scheme
  • 4.3 Simulation and experimental verification
  • 4.4 Conclusions
  • References
  • 5 Control design of grid-connected three-phase inverters
  • 5.1 Introduction
  • 5.2 Inverter topologies
  • 5.2.1 Grid forming inverters
  • 5.2.2 Grid following inverters
  • 5.3 Control strategies
  • 5.3.1 Control architecture of GFL inverters
  • 5.3.2 PLL
  • 5.3.3 Power controller
  • 5.3.4 Current controller
  • 5.4 Results and discussion
  • 5.4.1 Real-time co-simulation testbed
  • 5.4.2 Power hardware-in-loop testbed
  • 5.5 Conclusion
  • References
  • 6 Sliding mode control of a three-phase inverter
  • 6.1 Introduction
  • 6.2 Modeling description and control of the inverter
  • 6.2.1 Mathematical model of the DC/AC converter
  • 6.2.2 Proposed SMA
  • 6.3 SMA for performance improvement of WPS fed by VSI
  • 6.3.1 Modeling description of the WECS
  • 6.3.2 SMA of the rectifier and MPP tracking approach
  • 6.4 Simulation and evaluation of performance
  • 6.5 Conclusions
  • References
  • 7 Sliding-mode control of a three-level NPC grid-connected inverter
  • 7.1 Introduction
  • 7.2 Three-phase grid-connected NPC inverter
  • 7.3 Reaching law in SMC
  • 7.3.1 Sliding surface design
  • 7.4 Super twisting SMC
  • 7.4.1 Control design
  • 7.4.2 Stability of the super twisting SMC
  • 7.5 Results and discussion
  • 7.6 Conclusion
  • References
  • 8 Neuro control of grid-connected three-phase inverters