|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_on1368202992 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
230203s2023 mau o 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCF
|d SFB
|
020 |
|
|
|z 9780081030073
|q (print)
|
029 |
1 |
|
|a AU@
|b 000073396842
|
035 |
|
|
|a (OCoLC)1368202992
|
050 |
|
4 |
|a TJ267.5.B5
|
082 |
0 |
4 |
|a 621.45
|2 23/eng/20230203
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Advances in wind turbine blade design and materials /
|c edited by Povl Brøndsted, Rogier Nijssen, Stergios Goutianos.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a Cambridge, MA :
|b Woodhead Publishing, an imprint of Elsevier,
|c 2023.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Woodhead Publishing Series in Energy
|
520 |
|
|
|a Advances in Wind Turbine Blade Design and Materials, Second Edition, builds on the thorough review of the design and functionality of wind turbine rotor blades and the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed February 3, 2023).
|
505 |
0 |
|
|a Front Cover -- Advances in Wind Turbine Blade Design and Materials -- Advances in Wind Turbine Blade Design and Materials -- Copyright -- Contents -- Contributors -- I -- Wind turbine blade design: challenges and developments -- 1 -- Introduction to wind turbine blade design -- 1.1 Introduction -- 1.1.1 State of the art-Blade design -- 1.2 Design principles and failure mechanisms -- 1.2.1 Design principles -- 1.2.2 Failure mechanisms -- 1.2.2.1 Failure in the cap(s) caused by brazier loads -- 1.2.2.2 Buckling -- 1.2.2.3 Cross-sectional shear distortion -- Fatigue problem at the root transition area -- 1.2.2.4 Failure in the adhesive bondlines -- 1.2.2.5 Buckling driven delamination -- 1.2.2.6 Shear web failure -- 1.2.2.7 Flutter -- 1.2.2.8 Impact of torsional loads -- 1.3 Challenges and future trends in wind turbine blade design -- 1.3.1 Testing approach -- 1.3.2 Development of more advanced test methods -- 1.3.3 Testing parts of blades -- 1.3.4 Building block approach -- 1.3.5 Certification and standards -- 1.3.6 Owners' requirements -- 1.3.7 Finite element approach -- 1.3.8 Digital twin technology -- 1.4 Retrofit solutions -- 1.4.1 D-string -- 1.4.2 D-stiffener -- 1.4.3 X-stiffener -- 1.4.4 Floor -- References -- Further reading -- 2 -- Loads on wind turbine blades -- 2.1 Introduction -- 2.2 Types of load -- 2.2.1 Global loads -- 2.2.2 Local strains and stresses -- 2.2.3 Deflection and deformation -- 2.3 Generation of loads -- 2.3.1 Aerodynamic loads in operation and at idling or standstill -- 2.3.2 Inertia, gravitational and gyroscopic loads -- 2.3.3 Actuation loads -- 2.4 Fatigue and extreme loads -- 2.4.1 Assessment of ultimate loading -- 2.4.2 Assessment of fatigue loads -- 2.5 Design verification testing -- 2.5.1 Design verification process -- 2.5.2 Instrumentation -- 2.5.3 Calibration of global bending moment measurements.
|
505 |
8 |
|
|a 2.6 Challenges and future trends -- 2.6.1 Design options -- 2.6.1.1 Aeroelastic tailoring -- 2.6.1.2 Vortex generators -- 2.6.2 Operation strategies to mitigate loading -- 2.6.2.1 Individual pitch control -- 2.6.3 Materials issues -- References -- Sources of further information and advice -- 3 -- Aerodynamic design of wind turbine rotors -- 3.1 Introduction -- 3.1.1 State-of-the-art rotor design -- 3.1.2 Models and elements used in the rotor design process -- 3.2 The blade element momentum method -- 3.2.1 One-dimensional momentum theory -- 3.2.2 Blade element momentum theory -- 3.3 Important parameters in aerodynamic rotor design -- 3.3.1 Airfoil performance -- 3.4 Particular design parameters -- 3.4.1 Tip speed ratio -- 3.4.2 Size of rotor/generator -- 3.4.3 Rotor control -- 3.4.4 Design constraints -- 3.4.5 Choice of number of blades -- 3.4.6 Evaluation of the rotor design -- 3.5 An example of the rotor design process -- 3.5.1 Step 1: wind climate -- 3.5.2 Step 2: size of rotor/generator -- 3.5.3 Step 3: rotor control -- 3.5.4 Step 4: design constraints -- 3.5.5 Step 5: choice of number of blades -- 3.5.6 Step 6: choice of design lift and airfoils -- 3.5.7 Step 7: choice of design tip speed ratio -- 3.5.8 Step 8: one point design of blade -- 3.5.9 Step 9: evaluation of the blade design -- 3.6 Future trends -- 3.7 Sources of further information and advice -- Appendix: nomenclature -- Acknowledgments -- References -- 4 -- Aerodynamic characteristics of wind turbine blade airfoils -- 4.1 Introduction -- 4.2 Computational methods -- 4.2.1 Panel codes, XFOIL and RFOIL -- 4.2.2 Computational uid dynamics -- 4.2.2.1 Investigation of airfoil contour -- 4.2.2.2 Mesh generation -- 4.2.2.3 Inspection of mesh -- 4.2.2.4 Boundary conditions -- 4.2.2.5 Turbulence model -- 4.2.2.6 Computing -- 4.2.2.7 Inspection of results.
|
505 |
8 |
|
|a 4.2.3 Panel codes versus Navier-Stokes codes -- 4.2.3.1 Computational speed -- 4.2.3.2 Time for preparation -- 4.2.3.3 Computational details -- 4.2.3.4 Comparisons to measurements -- 4.2.3.5 Summary -- 4.3 Desired characteristics -- 4.3.1 The velocity and forces on a blade element -- 4.3.2 Outboard airfoils -- 4.3.3 Inboard airfoils -- 4.4 The impact of leading edge contamination, erosion and Reynolds number -- 4.4.1 Effects of roughness -- 4.4.2 The effect of the Reynolds number -- 4.5 Noise -- 4.6 Airfoil testing -- 4.6.1 Setup and testing equipment -- 4.7 Airfoil characteristics at high angles of attack -- 4.8 Correction for centrifugal and Coriolis forces -- 4.8.1 Existing 3-D correction models -- 4.8.2 An example of the application of 3-D models to a wind turbine rotor with stall control -- 4.9 Establishing data for blade design -- 4.9.1 Available airfoil data -- 4.9.2 Establishing the data -- 4.10 Future trends -- Appendix: Nomenclature -- References -- 5 -- Aeroelastic design of wind turbine blades -- 5.1 Introduction -- 5.1.1 Aeroelasticity -- 5.1.2 Natural modes -- 5.2 Wind turbine blade aeroelasticity -- 5.2.1 Wind turbine blade modes -- 5.2.2 Wind turbine blade instabilities -- 5.2.2.1 Stall-induced instabilities -- 5.2.2.2 Idling and parked instabilities -- 5.2.2.3 Classical flutter -- 5.3 Blade design -- 5.3.1 Avoidance of resonance -- 5.3.2 Structural pitch angle -- 5.3.3 Bend twist coupling -- 5.3.4 Analysis -- 5.3.5 Aerofoils -- 5.4 Complete turbine design -- 5.5 Challenges and future trends -- 5.6 Sources of further information and advice -- References -- 6 -- Micromechanical modeling of wind blade materials -- 6.1 Introduction -- 6.2 Analytical methods of micromechanical modeling of fiber-reinforced composites: an overview -- 6.2.1 Analytical models of damage and strength of fiber-reinforced composites: tensile loading.
|
505 |
8 |
|
|a 6.2.2 Modeling of compressive failure of composites -- 6.3 Unit cell modeling of fiber-reinforcedcomposites -- 6.4 3D modeling of composite degradation under tensile loading -- 6.5 Carbon fiber-reinforced composites: statistical and compressive loading effects -- 6.6 Hierarchical composites with nanoengineered matrix -- 6.7 Conclusions, challenges, and future trends -- 6.8 Sources of further information -- Acknowledgments -- References -- Further reading -- II -- Fatigue behavior of composite wind turbine blades -- 7 -- Fatigue as a design driver for composite wind turbine blades -- 7.1 Introduction -- 7.2 Materials in blades -- 7.3 Blade structure and components -- 7.3.1 Load-bearing components -- 7.3.1.1 Root and blade joint connections -- 7.3.2 Aerodynamic shell -- 7.3.2.1 Skin -- 7.3.3 Cost -- 7.4 Fundamentals of wind turbine blade fatigue -- 7.4.1 Signi cance of fatigue loading on blades -- 7.5 Rotor blade tests at Delft University of Technology in 1984 () -- 7.5.1 Number of load cycles -- 7.5.2 Variability of cycles -- 7.5.3 Contribution of each load cycle to fatigue damage -- 7.5.4 Need for design optimization -- 7.5.5 Fundamentals of fatigue modeling -- 7.6 Research into wind turbine blade fatigue and its modeling -- 7.6.1 Empirical and phenomenological fatigue modeling -- 7.6.2 Micromechanical modeling -- 7.6.3 Thick laminates -- 7.6.4 Extreme conditions -- 7.6.5 Bondlines -- 7.6.6 Leading- and trailing-edge reinforcement -- 7.7 Future trends -- 7.7.1 Signi cance of material models for blade tests -- 7.7.2 Probabilistic modeling -- 7.7.3 Structural health monitoring -- 7.7.4 Sustainability -- 7.7.5 Testing -- 7.7.6 Reaching the limits -- 7.7.7 Redundancy of supply -- 7.7.8 Automated production -- 7.7.9 Repair -- 7.7.10 Subcomponent research -- 7.8 Conclusion -- 7.9 Sources of further information and advice -- References -- Further reading.
|
505 |
8 |
|
|a 8 -- Effects of resin and reinforcement variations on Fatigue resistance of wind turbine blades -- 8.1 Introduction -- 8.2 Effects of loading conditions for glass and carbon laminates -- 8.3 Tensile fatigue trends with laminate construction and fiber content for glass fiber laminates -- 8.3.1 Materials -- 8.3.2 Fatigue parameters for different laminate types -- 8.3.3 Effects of ber content -- 8.4 Effects of resin and fabric structure on tensile fatigue resistance -- 8.4.1 Effects of resin on multidirectional (MD) laminates -- 8.4.2 Effects of resin on unidirectional (UD) fabric laminates -- 8.4.3 Effects of resin on UD aligned strand (AS) laminates compared to UD fabric laminates -- 8.4.4 Effects of resin on biax laminates -- 8.4.5 Effects of fabric weight and structure on epoxy resin MD laminates -- 8.5 Delamination and material transitions -- 8.5.1 Ply drops in carbon and glass prepreg laminates -- 8.5.2 Infused complex structured coupons with ply drops -- 8.6 Comparison of fatigue trends for blade materials -- 8.7 Conclusion -- 8.8 Future trends -- 8.9 Sources of further information and advice -- Acknowledgments -- References -- 9 -- Fatigue behavior and life prediction of wind turbine blade composite materials -- 9.1 Introduction -- 9.2 Fatigue behavior of laminates under complex loading profiles -- 9.2.1 Fatigue experiments -- 9.3 Fatigue life modeling and prediction -- 9.3.1 Macroscopic failure theories -- 9.3.1.1 S-N curve formulations -- 9.3.1.2 Constant life diagrams -- 9.3.2 Strength and stiffness degradation fatigue theories -- 9.3.3 Fracture mechanics fatigue theories -- 9.3.3.1 Manipulation of fracture mechanics data -- 9.4 Case study: phenomenological fatigue life prediction -- 9.5 Summary and future trends -- References -- 10 -- Probabilistic design of wind turbine blades -- 10.1 Introduction -- 10.1.1 Overview of probabilistic design.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Sustainable Energy & Development
|
650 |
|
0 |
|a Turbines
|x Blades
|x Design and construction.
|
650 |
|
0 |
|a Turbines
|x Blades
|x Materials.
|
650 |
|
0 |
|a Wind turbines
|x Materials.
|
650 |
|
0 |
|a Wind turbines
|x Aerodynamics.
|
650 |
|
7 |
|a Turbines
|x Blades
|x Design and construction.
|2 fast
|0 (OCoLC)fst01159119
|
650 |
|
7 |
|a Wind turbines
|x Aerodynamics.
|2 fast
|0 (OCoLC)fst01175729
|
700 |
1 |
|
|a Brøndsted, Povl,
|e editor.
|
700 |
1 |
|
|a Nijssen, Rogier P. L.,
|e editor.
|
700 |
1 |
|
|a Goutianos, Stergios,
|e editor.
|
830 |
|
0 |
|a Woodhead Publishing in energy.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpAWTBDME2/toc
|z Texto completo
|
994 |
|
|
|a 92
|b IZTAP
|