|
|
|
|
LEADER |
00000cam a22000007i 4500 |
001 |
KNOVEL_on1365334826 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
230202s2023 mau ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d OPELS
|d OCLCF
|d YDX
|d OCLCO
|d SFB
|
020 |
|
|
|a 9780128202708
|q electronic book
|
020 |
|
|
|a 012820270X
|q electronic book
|
020 |
|
|
|z 9780128202692
|
029 |
1 |
|
|a AU@
|b 000073485878
|
029 |
1 |
|
|a AU@
|b 000074420859
|
035 |
|
|
|a (OCoLC)1365334826
|
050 |
|
4 |
|a TN870.57
|b .B45 2023
|
082 |
0 |
4 |
|a 622/.3382
|2 23/eng/20230214
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Belhaj, Hadi.
|
245 |
1 |
0 |
|a Tight oil reservoirs :
|b characterization, modeling, and field development /
|c Hadi Belhaj.
|
264 |
|
1 |
|a Cambridge, MA :
|b Gulf Professional Publishing, an imprint of Elsevier,
|c [2023]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Unconventional reservoir engineering series
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on April 21, 2023).
|
505 |
0 |
|
|a Intro -- Tight Oil Reservoirs: Characterization, Modeling, and Field Development -- Copyright -- Dedication -- Contents -- About the author -- Preface -- Acknowledgment -- Chapter 1: Introduction -- References -- Chapter 2: Classification of unconventional reservoirs -- 2.1. Reservoir classification strategy -- 2.2. Classification of petroleum systems -- 2.2.1. Classification of conventional petroleum reservoirs -- 2.2.1.1. Classification on the basis of storage and flow characteristics of the reservoir -- 2.2.1.2. Classification on the basis of reservoir geometry -- 2.2.2. Classification of unconventional petroleum reservoirs -- 2.2.2.1. Tight oil reservoirs -- 2.2.2.2. Tight gas reservoirs -- 2.2.2.3. Deep and ultra-deep gas reservoirs -- 2.2.2.4. Shale gas reservoirs -- 2.2.2.5. Gas hydrate reservoirs (GHRs) -- 2.2.2.6. Heavy and extra heavy oil reservoirs -- 2.2.2.7. Coalbed methane (CBM) reservoirs -- 2.3. What makes reservoirs unconventional -- 2.4. Classification of tight unconventional reservoirs -- References -- Chapter 3: Geology of tight unconventional oil reservoirs -- 3.1. Petroleum geology of tight unconventional reservoirs -- 3.1.1. Geological generation of unconventional hydrocarbon resources -- 3.1.2. Sedimentation environment of tight UCRs -- 3.2. Geological aspects of shale and tight plays -- 3.3. Source and near-source rock-type unconventional reservoirs -- References -- Chapter 4: Formation evaluation of tight unconventional reservoirs -- 4.1. Tight unconventional reservoir production background -- 4.2. Formation evaluation: Conventional versus unconventional reservoirs -- 4.3. Formation evaluation of conventional reservoirs -- 4.4. Formation evaluation of unconventional reservoirs -- 4.4.1. Unconventional reservoir concept -- 4.4.2. Importance of unconventional reservoirs.
|
505 |
8 |
|
|a 4.4.3. Challenges in formation evaluation of unconventional reservoirs -- 4.4.4. Typical tight UCR formation evaluation steps -- 4.4.5. Assessing tight unconventional reservoirs -- 4.4.6. Hydrocarbon-in-place assessment -- 4.4.7. Reservoir performance assessment -- 4.5. Assessment case study # 1 -- 4.6. Assessment case study # 2 -- 4.7. Data source and valuation -- 4.7.1. Petrophysical assessment -- 4.7.1.1. Lithology -- 4.7.1.2. Bulk density -- 4.7.1.3. Porosity -- 4.7.1.4. Permeability -- 4.7.1.5. Resistivity -- 4.7.1.6. Water saturation -- 4.7.2. Geochemical assessment -- 4.7.2.1. Vitrinite reflectance -- 4.7.2.2. Types and maturity of the organic matter -- 4.7.2.3. Total organic carbon (TOC) -- 4.7.2.4. Mineral content -- 4.7.2.5. Gas content -- 4.7.3. Geomechanical evaluation -- 4.7.3.1. Poisson's ratio -- 4.7.4. Shear modulus -- 4.7.4.1. Young's modulus -- 4.7.4.2. Stress intensity factor -- 4.7.4.3. Formation stress -- 4.8. Role of macro-, micro-, and nanoscale assessment of tight unconventional reservoirs -- 4.8.1. Mercury intrusion capillary pressure (MICP) -- 4.8.1.1. Example of the use of MICP -- 4.8.2. Gas adsorption method -- 4.8.2.1. Example of the gas adsorption -- 4.8.3. Scanning electron microscopy (SEM) -- 4.9. Static modeling role in formation evaluation of unconventional reservoirs -- 4.9.1. Reservoir-scale model -- 4.9.2. Basin-scale model -- 4.9.2.1. Case study -- 4.9.3. Burial history model -- 4.10. Hydrocarbon enrichment spot identification -- References -- Chapter 5: Reservoir characterization of tight unconventional reservoirs -- 5.1. Reservoir description -- 5.1.1. Conventional reservoir description -- 5.1.2. Differences between conventional and unconventional reservoirs -- 5.1.3. Source-reservoir characteristics -- 5.1.4. Migration and accumulation characteristics -- 5.1.5. Reservoir characteristics.
|
505 |
8 |
|
|a 5.1.6. Distribution characteristics -- 5.1.7. Flow characteristics -- 5.1.8. Significance of tight unconventional reservoir description -- 5.1.9. Complications/remedies of unconventional reservoir description -- 5.2. Macro-/micro-/nanoscale role in tight unconventional reservoir characterization -- 5.2.1. Scale definition -- 5.2.2. Significance of nanoscale -- 5.2.3. Interrelations of reservoir scales -- 5.3. Flow mechanisms of shale nanochannels -- 5.3.1. Problem definition -- 5.3.2. Nanoscale flow -- 5.3.3. Nanoscale debate -- 5.3.3.1. Slip flow -- 5.3.3.2. Adsorption -- 5.3.3.3. Inorganic and organic matter -- 5.3.4. Summary of nanoscale -- 5.4. Tight unconventional reservoir transition zone description -- 5.4.1. Tools for determining transition zone -- 5.4.1.1. Scanning electron microscope (SEM) -- 5.4.1.2. Mercury injection capillary pressure (MICP) -- 5.4.1.3. Reservoir rock typing (RRT) -- 5.4.1.4. Special core analysis (SCAL) -- 5.4.1.5. Conventional core analysis (CCA) -- 5.4.2. Significance of transition zone investigation -- 5.4.3. Factors affecting transition zone characteristics -- 5.4.3.1. Static and dynamic reservoir rock typing -- 5.4.3.2. Petrophysical analysis and diagenesis -- 5.4.3.3. Hysteresis capillary pressure and relative permeability behaviors -- 5.4.3.4. Wettability envelope -- 5.4.3.5. Electrical resistivity and saturation exponent -- 5.5. Role of CT/XRD/NMR/SEM -- 5.5.1. CT -- 5.5.2. XRD -- 5.5.3. NMR -- 5.5.4. SEM -- 5.6. Tight unconventional reservoir data integration -- 5.6.1. Well logging data -- 5.6.2. Core analysis data -- 5.6.3. Well testing data -- 5.7. Ordos basin, Northcentral China case study -- 5.7.1. Static and dynamic modeling -- 5.7.2. Research on the Ordos Basin, Northcentral China -- References -- Chapter 6: Dynamic modeling of tight unconventional reservoirs.
|
505 |
8 |
|
|a 6.1. Main differences between conventional and tight unconventional reservoirs flow modeling -- 6.2. Dynamic/static model projection -- 6.3. Mechanisms controlling fluid flow through tight UCRs -- 6.3.1. Non-Darcy flow mechanism -- 6.3.2. The eight governing flow mechanisms in tight UCR porous media -- 6.3.2.1. Viscous forces -- 6.3.2.2. Inertial forces -- 6.3.2.3. Capillary forces -- 6.3.2.4. Diffusion forces -- 6.3.2.5. Sorption forces -- 6.3.2.6. Desorption forces -- 6.3.2.7. Advection forces -- 6.3.2.8. Viscoelastic forces -- 6.4. Dynamic model development -- 6.4.1. Modified Buckingham-Reiner equation -- 6.4.2. Model related to slip boundary conditions -- 6.4.3. Enskog equation -- 6.4.4. Model considering the viscous and diffusion -- 6.4.5. Physical implications of the eight mechanisms -- 6.4.5.1. Viscous forces -- 6.4.5.2. Diffusion forces -- 6.4.5.3. Sorption forces -- 6.4.5.4. Desorption forces -- 6.4.5.5. Inertial forces -- 6.4.5.6. Advection forces -- 6.4.5.7. Capillary forces -- 6.4.5.8. Viscoelastic forces -- 6.4.6. Mathematical expression of eight mechanisms -- 6.4.6.1. Viscous force -- 6.4.6.2. Diffusion force -- 6.4.6.3. Sorption forces -- 6.4.6.4. Desorption forces -- 6.4.6.5. Advection forces -- 6.4.6.6. Inertial forces -- 6.4.6.7. Capillary forces -- 6.4.6.8. Viscoelastic forces -- 6.4.7. Model development sample -- 6.5. Dynamic model validation -- 6.5.1. Parametric validation -- 6.5.2. Experimental data validation -- 6.5.3. Field data validation -- 6.6. Mathematical expressions -- 6.6.1. Combination of viscous flow and Knudsen diffusion -- 6.6.2. Adsorption and desorption -- 6.6.3. Diffusion -- References -- Chapter 7: Field development of tight unconventional reservoirs -- 7.1. Tight unconventional reservoirs development criteria -- 7.1.1. Total organic carbon (TOC) -- 7.1.2. Kerogen type and thermal maturity.
|
505 |
8 |
|
|a 7.1.3. Storage mechanism -- 7.1.4. Mineralogy -- 7.1.5. Hydrocarbon-in-place -- 7.1.6. Reservoir formation thickness -- 7.1.7. Reservoir fluids saturation, distribution, and fluid contact (egg-box-stack theory) -- 7.1.8. Reservoir pressure -- 7.1.9. Reservoir rock brittleness and fractures -- 7.1.10. Stimulation conditions -- 7.2. Current practice -- 7.2.1. Identifying the hydrocarbon enrichment spots (HES) -- 7.2.2. Tight unconventional reservoir well development -- 7.2.3. Well spacing -- 7.2.4. Pad development -- 7.3. Horizontal drilling and hydraulic fracturing challenges -- 7.3.1. Horizontal wells -- 7.3.2. Fracturing tight unconventional reservoirs -- 7.3.3. Fracturing fluids -- 7.4. Tight unconventional reservoir production profile -- 7.4.1. Nature of production profiles -- 7.5. Production profile comparison of conventional and tight unconventional reservoirs -- 7.6. Advancement in hydraulic fracturing technologies -- 7.6.1. Development of hydraulic fracturing -- 7.6.2. Fracturing fluids -- 7.6.3. Proppants -- 7.6.4. Pumping and blending equipment -- 7.6.5. Fracture treatment design -- 7.7. Refracturing -- 7.8. Advancements in slim wells -- 7.9. EOR for tight unconventional reservoirs -- 7.9.1. Gas injection -- 7.9.1.1. Traditional gas injection -- 7.9.1.2. Gas injection huff-n-buff -- 7.9.2. Water injection -- 7.9.2.1. Continuous water injection -- 7.9.2.2. Water injection huff-n-buff -- 7.9.3. Surfactant injection -- 7.9.4. Other potential EOR techniques -- 7.10. Case studies -- 7.10.1. Wattenberg field case study -- 7.10.2. Eagle ford case study -- References -- Chapter 8: Economics and risk analysis of tight oil unconventional reservoirs -- 8.1. Background -- 8.2. Economic and risk analysis of conventional reservoirs -- 8.2.1. Economic analysis -- 8.2.2. Net cash flow -- 8.2.3. Revenue estimation -- 8.2.4. Taxes and royalties.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Earth Sciences
|
590 |
|
|
|a Knovel
|b ACADEMIC - Oil & Gas Engineering
|
650 |
|
0 |
|a Oil reservoir engineering.
|
650 |
|
6 |
|a Étude des gisements pétrolifères.
|
650 |
|
7 |
|a Oil reservoir engineering
|2 fast
|
776 |
0 |
8 |
|c Original
|z 0128202696
|z 9780128202692
|w (OCoLC)1148897550
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpTORCMFD7/toc
|z Texto completo
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 304400589
|
994 |
|
|
|a 92
|b IZTAP
|