|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
KNOVEL_on1354205722 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
221210s2022 xx o ||| 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d UKAHL
|d YDX
|d K6U
|d OCLCF
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 1354515675
|
020 |
|
|
|a 9781683928256
|
020 |
|
|
|a 1683928253
|
029 |
1 |
|
|a AU@
|b 000075099795
|
035 |
|
|
|a (OCoLC)1354205722
|z (OCoLC)1354515675
|
050 |
1 |
4 |
|a QA76.9.D343
|b .C36 2022
|
082 |
0 |
4 |
|a 006.3/12
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Campesato, Oswald.
|
245 |
1 |
0 |
|a Pandas Basics
|h [electronic resource].
|
260 |
|
|
|a Bloomfield :
|b Mercury Learning & Information,
|c 2022.
|
300 |
|
|
|a 1 online resource (215 p.)
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Cover -- Title Page -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1: Introduction to Python -- Tools for Python -- easy_install and pip -- virtualenv -- IPython -- Python Installation -- Setting the PATH Environment Variable (Windows Only) -- Launching Python on Your Machine -- The Python Interactive Interpreter -- Python Identifiers -- Lines, Indentation, and Multi-lines -- Quotations and Comments -- Saving Your Code in a Module -- Some Standard Modules -- The help() and dir() Functions -- Compile Time and Runtime Code Checking -- Simple Data Types -- Working with Numbers
|
505 |
8 |
|
|a Working with Other Bases -- The chr() Function -- The round() Function -- Formatting Numbers -- Working with Fractions -- Unicode and UTF-8 -- Working with Unicode -- Working with Strings -- Comparing Strings -- Formatting Strings -- Uninitialized Variables and the Value None -- Slicing and Splicing Strings -- Testing for Digits and Alphabetic Characters -- Search and Replace a String in Other Strings -- Remove Leading and Trailing Characters -- Printing Text without NewLine Characters -- Text Alignment -- Working with Dates -- Converting Strings to Dates -- Exception Handling
|
505 |
8 |
|
|a Handling User Input -- Command-line Arguments -- Summary -- Chapter 2: Working with Data -- Dealing with Data: What Can Go Wrong? -- What is Data Drift? -- What are Datasets? -- Data Preprocessing -- Data Types -- Preparing Datasets -- Discrete Data Versus Continuous Data -- Binning Continuous Data -- Scaling Numeric Data via Normalization -- Scaling Numeric Data via Standardization -- Scaling Numeric Data via Robust Standardization -- What to Look for in Categorical Data -- Mapping Categorical Data to Numeric Values -- Working with Dates -- Working with Currency
|
505 |
8 |
|
|a Working with Outliers and Anomalies -- Outlier Detection/Removal -- Finding Outliers with NumPy -- Finding Outliers with Pandas -- Calculating Z-scores to Find Outliers -- Finding Outliers with SkLearn (Optional) -- Working with Missing Data -- Imputing Values: When is Zero a Valid Value? -- Dealing with Imbalanced Datasets -- What is SMOTE? -- SMOTE extensions -- The Bias-Variance Tradeoff -- Types of Bias in Data -- Analyzing Classifiers (Optional) -- What is LIME? -- What is ANOVA? -- Summary -- Chapter 3: Introduction to Probability and Statistics -- What is a Probability?
|
505 |
8 |
|
|a Calculating the Expected Value -- Random Variables -- Discrete versus Continuous Random Variables -- Well-known Probability Distributions -- Fundamental Concepts in Statistics -- The Mean -- The Median -- The Mode -- The Variance and Standard Deviation -- Population, Sample, and Population Variance -- Chebyshev's Inequality -- What is a p-value? -- The Moments of a Function (Optional) -- What is Skewness? -- What is Kurtosis? -- Data and Statistics -- The Central Limit Theorem -- Correlation versus Causation -- Statistical Inferences -- Statistical Terms: RSS, TSS, R^2, and F1 Score
|
500 |
|
|
|a What is an F1 score?
|
520 |
|
|
|a This book is intended for those who plan to become data scientists as well as anyone who needs to perform data cleaning tasks using Pandas and NumPy. --
|c Edited summary from book.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Software Engineering
|
650 |
|
0 |
|a Data mining.
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Campesato, Oswald
|t Pandas Basics
|d Bloomfield : Mercury Learning & Information,c2022
|z 9781683928263
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpPB000023/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH41158364
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL30286674
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 18407642
|
994 |
|
|
|a 92
|b IZTAP
|