Cargando…

Python feature engineering cookbook /

Feature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to us...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Galli, Soledad (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing Ltd., 2022.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007i 4500
001 KNOVEL_on1350412247
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu|||unuuu
008 221108s2022 enka o 001 0 eng d
040 |a ORMDA  |b eng  |e rda  |e pn  |c ORMDA  |d OCLCF  |d OCLCO 
020 |z 9781804611302 
035 |a (OCoLC)1350412247 
037 |a 9781804611302  |b O'Reilly Media 
050 4 |a QA76.73.P98 
082 0 4 |a 005.13/3  |2 23/eng/20221108 
049 |a UAMI 
100 1 |a Galli, Soledad,  |e author. 
245 1 0 |a Python feature engineering cookbook /  |c Soledad Galli. 
250 |a Second edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing Ltd.,  |c 2022. 
300 |a 1 online resource (386 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
520 |a Feature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes. This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner. By the end of this Python book, you will have the tools and expertise needed to confidently build end-to-end and reproducible feature engineering pipelines that can be deployed into production. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a Knovel  |b ACADEMIC - Software Engineering 
650 0 |a Python (Computer program language) 
650 0 |a Application software  |x Development. 
650 0 |a Machine learning. 
650 6 |a Python (Langage de programmation) 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Apprentissage automatique. 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpPFEC0004/toc  |z Texto completo 
994 |a 92  |b IZTAP