Cargando…

Injection mold design engineering /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kazmer, David (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Munich : Hanser, [2022]
Edición:3rd edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1347121605
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu|||unuuu
008 221010s2022 gw ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d OCLCO  |d SFB 
020 |a 9781569908921  |q (electronic bk.) 
020 |a 1569908923  |q (electronic bk.) 
020 |z 9781569908914 
035 |a (OCoLC)1347121605 
050 4 |a TP1150 
082 0 4 |a 668.4/12  |2 23/eng/20221014 
049 |a UAMI 
100 1 |a Kazmer, David,  |e author. 
245 1 0 |a Injection mold design engineering /  |c David O. Kazmer. 
250 |a 3rd edition. 
264 1 |a Munich :  |b Hanser,  |c [2022] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed October 14, 2022). 
505 0 |a Intro -- Preface -- Contents -- Nomenclature -- 1 Introduction -- 1.1 Overview of the Injection Molding Process -- 1.2 Mold Functions -- 1.3 Mold Structures -- 1.3.1 External View of Mold -- 1.3.2 View of Mold during Part Ejection -- 1.3.3 Mold Cross-Section and Function -- 1.4 Other Common Mold Types -- 1.4.1 Three-Plate, Multicavity Family Mold -- 1.4.2 Hot Runner, Multigated, Single-Cavity Mold -- 1.4.3 Comparison -- 1.5 The Mold Development Process -- 1.6 Mold Standards -- 1.7 Chapter Review -- 2 Plastic Part Design -- 2.1 The Product Development Process -- 2.1.1 Product Definition -- 2.1.2 Product Design -- 2.1.3 Development -- 2.1.4 Scale-Up and Launch -- 2.1.5 Role of Mold Design in Manufacturing Strategy -- 2.2 Prototyping Strategy -- 2.2.1 3D Printing by Material Extrusion (Fused Deposition Modeling) -- 2.2.2 3D Printing by Selective Laser Sintering -- 2.2.3 3D Printing by Stereolithography, Digital Light Processing, and Continuous Liquid Interface Production -- 2.2.4 3D Printing by PolyJet and Multi Jet Fusion -- 2.3 Design Requirements -- 2.3.1 Application Engineering Information -- 2.3.2 Computer-Aided Engineering (CAE) -- 2.3.3 Production Planning -- 2.3.4 End-Use Requirements -- 2.3.5 Design for Manufacturing and Assembly -- 2.3.6 Plastic Material Properties -- 2.4 Design for Injection Molding -- 2.4.1 Uniform Wall Thickness -- 2.4.2 Rib Design -- 2.4.3 Boss Design -- 2.4.4 Corner Design -- 2.4.5 Surface Finish and Textures -- 2.4.6 Draft -- 2.4.7 Undercuts -- 2.5 Sustainability -- 2.6 Chapter Review -- 3 Mold Procurement -- 3.1 Overview -- 3.2 The Procurement Process -- 3.3 Molded Part Cost Estimation -- 3.3.1 Mold Cost per Part -- 3.3.2 Material Cost per Part -- 3.3.3 Processing Cost per Part -- 3.3.4 Defect Cost per Part -- 3.4 Mold Cost Estimation -- 3.4.1 Mold Base Cost Estimation -- 3.4.2 Cavity Cost Estimation. 
505 8 |a 3.4.2.1 Insert Cost Estimation -- 3.4.2.2 Inserts Discount Factor -- 3.4.2.3 Insert Cost Machining Factors -- 3.4.2.4 Insert Cost Finishing Factors -- 3.4.3 Mold Customization -- 3.5 Rapid and Additive Manufacturing -- 3.5.1 Common Additively Manufactured Materials -- 3.5.2 Additive Manufacturing Process Performance Metrics -- 3.5.3 Design for Additive Manufacturing Guidelines -- 3.5.4 Preferred Workflow and File Formats -- 3.6 Mold Selection by Breakeven Analysis -- 3.7 Chapter Review -- 4 Mold Layout Design -- 4.1 Parting Plane Design -- 4.1.1 Determine Mold Opening Direction -- 4.1.2 Determine Parting Line -- 4.1.3 Parting Plane -- 4.1.4 Shut-Offs -- 4.2 Cavity and Core Insert Creation -- 4.2.1 Height Dimension -- 4.2.2 Length and Width Dimensions -- 4.2.3 Adjustments -- 4.3 Mold Base Selection -- 4.3.1 Cavity Layouts -- 4.3.2 Mold Base Sizing -- 4.3.3 Molding Machine Compatibility -- 4.3.4 Mold Base Suppliers -- 4.4 Material Selection -- 4.4.1 Strength vs. Heat Transfer -- 4.4.2 Hardness vs. Machinability -- 4.4.3 Material Summary -- 4.4.4 Surface Treatments -- 4.5 Chapter Review -- 5 Cavity Filling Analysis and Design -- 5.1 Overview -- 5.2 Objectives in Cavity Filling -- 5.2.1 Complete Filling of Mold Cavities -- 5.2.2 Avoid Uneven Filling or Over-Packing -- 5.2.3 Control the Melt Flow -- 5.3 Viscous Flow -- 5.3.1 Shear Stress, Shear Rate, and Viscosity -- 5.3.2 Pressure Drop -- 5.3.3 Rheological Behavior -- 5.3.4 Newtonian Model -- 5.3.5 Power Law Model -- 5.4 Cavity Filling Analyses and Designs -- 5.4.1 Estimating the Processing Conditions -- 5.4.2 Estimating the Filling Pressure and Minimum Wall Thickness -- 5.4.3 Estimating Clamp Tonnage -- 5.4.4 Predicting Filling Patterns -- 5.4.5 Designing Flow Leaders -- 5.5 Process Simulation -- 5.5.1 Simulation Pre-Processing -- 5.5.2 Simulation Post-Processing -- 5.5.3 Discussion. 
505 8 |a 5.6 Chapter Review -- 6 Feed System Design -- 6.1 Overview -- 6.2 Objectives in Feed System Design -- 6.2.1 Conveying the Polymer Melt from Machine to Cavities -- 6.2.2 Impose Minimal Pressure Drop -- 6.2.3 Consume Minimal Material -- 6.2.4 Control Flow Rates -- 6.3 Feed System Types -- 6.3.1 Two-Plate Mold -- 6.3.2 Three-Plate Mold -- 6.3.3 Hot Runner Molds -- 6.4 Feed System Analysis -- 6.4.1 Determine Type of Feed System -- 6.4.2 Determine Feed System Layout -- 6.4.3 Estimate Pressure Drops -- 6.4.4 Calculate Runner Volume -- 6.4.5 Optimize Runner Diameters -- 6.4.6 Balance Flow Rates -- 6.4.7 Estimate Runner Cooling Times -- 6.4.8 Estimate Residence Time -- 6.5 Feed System Simulation -- 6.5.1 Hot Runners -- 6.5.2 Cold Runners -- 6.6 Practical Issues -- 6.6.1 Color Changes with Hot Runners -- 6.6.2 Runner Cross-Sections -- 6.6.3 Sucker Pins -- 6.6.4 Runner Shut-Offs -- 6.6.5 Standard Runner Sizes -- 6.6.6 Steel Safe Designs -- 6.7 Advanced Feed Systems -- 6.7.1 Insulated Runner -- 6.7.2 Stack Molds -- 6.7.3 Branched Runners -- 6.7.4 Dynamic Melt Control -- 6.8 Chapter Review -- 7 Gating Design -- 7.1 Objectives of Gating Design -- 7.1.1 Connecting the Runner to the Mold Cavity -- 7.1.2 Provide Automatic De-gating -- 7.1.3 Maintain Part Aesthetics -- 7.1.4 Avoid Excessive Shear or Pressure Drop -- 7.1.5 Control Pack Times -- 7.2 Common Gate Designs -- 7.2.1 Sprue Gate -- 7.2.2 Pin-Point Gate -- 7.2.3 Edge Gate -- 7.2.4 Tab Gate -- 7.2.5 Fan Gate -- 7.2.6 Flash/Diaphragm Gate -- 7.2.7 Tunnel/Submarine Gate -- 7.2.8 Thermal Gate -- 7.2.9 Valve Gate -- 7.3 The Gating Design Process -- 7.3.1 Determine Gate Location(s) -- 7.3.2 Determine Type of Gate -- 7.3.3 Calculate Shear Rates -- 7.3.4 Calculate Pressure Drop -- 7.3.5 Calculate Gate Freeze Time -- 7.3.6 Adjust Dimensions -- 7.3.7 Gate Verification by Simulation -- 7.4 Chapter Review -- 8 Venting. 
505 8 |a 8.1 Venting Design Objectives -- 8.1.1 Release Compressed Air -- 8.1.2 Contain Plastic Melt -- 8.1.3 Minimize Maintenance -- 8.2 Venting Analysis -- 8.2.1 Estimate Air Displacement and Rate -- 8.2.2 Identify Number and Location of Vents -- 8.2.3 Specify Vent Dimensions -- 8.3 Venting Designs -- 8.3.1 Vents on Parting Plane -- 8.3.2 Vents around Ejector Pins -- 8.3.3 Vents in Dead Pockets -- 8.3.4 Vents with Porous Metals -- 8.3.5 3D Printed Porous Inserts -- 8.4 Venting Best Practices -- 8.4.1 Venting Simulation -- 8.4.2 Vent Sensing -- 8.5 Chapter Review -- 9 Cooling System Design -- 9.1 Objectives in Cooling System Design -- 9.1.1 Maximize Heat Transfer Rates -- 9.1.2 Maintain Uniform Wall Temperature -- 9.1.3 Minimize Mold Cost -- 9.1.4 Minimize Volume and Complexity -- 9.1.5 Maximize Reliability -- 9.1.6 Facilitate Mold Usage -- 9.2 The Cooling System Design Process -- 9.2.1 Calculate the Required Cooling Time -- 9.2.2 Evaluate Required Heat Transfer Rate -- 9.2.3 Assess Coolant Flow Rate -- 9.2.4 Assess Cooling Line Diameter -- 9.2.5 Select Cooling Line Depth -- 9.2.6 Select Cooling Line Pitch -- 9.2.7 Cooling Line Routing -- 9.2.8 Cooling Simulation -- 9.3 Cooling System Designs -- 9.3.1 Cooling Line Networks -- 9.3.2 Cooling Inserts -- 9.3.3 Highly Conductive Inserts -- 9.3.4 Cooling of Slender Cores -- 9.3.4.1 Cooling Insert -- 9.3.4.2 Baffles -- 9.3.4.3 Bubblers -- 9.3.4.4 Heat Pipes -- 9.3.4.5 Conductive Pin -- 9.3.4.6 Interlocking Core with Air Channel -- 9.3.5 One-Sided Heat Flow -- 9.4 Conformal Cooling -- 9.4.1 Spiral and Serpentine Designs -- 9.4.2 Network Designs -- 9.4.3 Lattice and Generative Designs -- 9.4.4 Comparison and Discussion -- 9.5 Advanced Temperature Control -- 9.5.1 Pulsed Cooling -- 9.5.2 Conduction Heating -- 9.5.3 Induction Heating -- 9.5.4 Managed Heat Transfer -- 9.6 Chapter Review -- 10 Shrinkage and Warpage. 
505 8 |a 10.1 The Shrinkage and Warpage Analysis Process -- 10.1.1 Estimate Process Conditions -- 10.1.2 Model Compressibility Behavior -- 10.1.3 Assess Volumetric Shrinkage -- 10.1.4 Evaluate Isotropic Linear Shrinkage -- 10.1.5 Evaluate Anisotropic Shrinkage -- 10.1.6 Warpage Estimation -- 10.2 Shrinkage and Warpage Simulation -- 10.2.1 Methodology -- 10.2.2 Pressure and Temperature Prediction -- 10.2.3 Shrinkage Prediction -- 10.2.4 Warpage Prediction -- 10.3 Shrinkage and Warpage Design Practices -- 10.3.1 Gating Dependence -- 10.3.2 Injection Compression Molding -- 10.3.3 Processing Corrections -- 10.3.4 Semicrystalline Plastics -- 10.3.5 Effect of Fillers -- 10.3.6 Shrinkage Range Estimation -- 10.3.7 Mold Commissioning and Shrinkage Validation -- 10.3.8 "Steel Safe" Mold Design -- 10.3.9 Warpage Avoidance and Compensation -- 10.4 Chapter Review -- 11 Ejection System Design -- 11.1 Objectives in Ejection System Design -- 11.1.1 Allow Mold to Open -- 11.1.2 Transmit Ejection Forces to Moldings -- 11.1.3 Minimize Distortion of Moldings -- 11.1.4 Maximize Ejection Speed -- 11.1.5 Minimize Cooling Interference -- 11.1.6 Minimize Impact on Part Surfaces -- 11.1.7 Minimize Complexity and Cost -- 11.2 The Ejector System Design Process -- 11.2.1 Identify Mold Parting Surfaces -- 11.2.2 Estimate Ejection Forces -- 11.2.3 Determine Ejector Push Area and Perimeter -- 11.2.4 Specify Type, Number, and Size of Ejectors -- 11.2.5 Lay Out Ejectors -- 11.2.6 Detail Ejectors and Related Components -- 11.3 Ejector System Analyses and Designs -- 11.3.1 Ejector Pins -- 11.3.2 Ejector Blades -- 11.3.3 Ejector Sleeves -- 11.3.4 Stripper Plates -- 11.3.5 Elastic Deformation around Undercuts -- 11.3.6 Core Pulls -- 11.3.7 Slides -- 11.3.8 Early Ejector Return Systems -- 11.4 Advanced Ejection Systems -- 11.4.1 Split Cavity Molds -- 11.4.2 Collapsible Cores. 
590 |a Knovel  |b ACADEMIC - Manufacturing Engineering 
590 |a Knovel  |b ACADEMIC - Plastics & Rubber 
650 0 |a Injection molding of plastics. 
650 6 |a Matières plastiques  |x Moulage par injection. 
650 7 |a injection molding.  |2 aat 
650 7 |a Injection molding of plastics  |2 fast 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpIMDE0011/toc  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 3399365 
994 |a 92  |b IZTAP