Cargando…

Evolving predictive analytics in healthcare : new AI techniques for real-time interventions /

This book examines machine learning trends in predictive technology to solve real-time healthcare problems. By using real-time data inputs to build predictive models, this new technology can model disease progression, assist with interventions or predict patient outcomes.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kumar, Abhishek, 1989- (Editor ), Dubey, Ashutosh Kumar (Editor ), Bhatia, Surbhi, 1988- (Editor ), Kumar, Swarn Avinash (Editor ), Le, Dac-Nhuong, 1983- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : The Institution of Engineering and Technology, 2022.
Colección:Healthcare technologies series ; 43.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 KNOVEL_on1343247510
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 220903s2022 enka ob 001 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d N$T  |d UIU  |d OCLCF  |d UKAHL  |d UPM  |d VLB  |d YDX  |d OCLCO 
019 |a 1342500293  |a 1346409111 
020 |a 9781839535123  |q (electronic bk.) 
020 |a 1839535121  |q (electronic bk.) 
020 |z 9781839535116 
020 |z 1839535113 
024 7 |a 10.1049/PBHE043E  |2 doi 
029 1 |a AU@  |b 000072804505 
035 |a (OCoLC)1343247510  |z (OCoLC)1342500293  |z (OCoLC)1346409111 
050 4 |a R859.7.A78 
082 0 4 |a 610.28563  |2 23 
049 |a UAMI 
245 0 0 |a Evolving predictive analytics in healthcare :  |b new AI techniques for real-time interventions /  |c edited by Abhishek Kumar, Ashutosh Kumar Dubey, Surbhi Bhatia, Swarn Avinash Kumar, Dac-Nhuong Le. 
264 1 |a London :  |b The Institution of Engineering and Technology,  |c 2022. 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
336 |a still image  |b sti  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Healthcare technologies series ;  |v 43 
520 |a This book examines machine learning trends in predictive technology to solve real-time healthcare problems. By using real-time data inputs to build predictive models, this new technology can model disease progression, assist with interventions or predict patient outcomes. 
505 0 |a Intro -- Title -- Copyright -- Contents -- About the Editors -- 1 COVID-19 detection in X-ray images using customized CNN model -- 1.1 Introduction -- 1.2 Related work -- 1.2.1 Key contributions and proposed work -- 1.3 Materials and methods -- 1.3.1 Feature extraction and selection -- 1.4 Results and discussion -- 1.5 Conclusion and future scope -- References -- 2 Introducing deep learning in medical diagnosis -- 2.1 Introduction -- 2.2 Literature survey -- 2.3 Overview of DL algorithms -- 2.3.1 Convolutional neural network -- 2.3.2 Recurrent neural network -- 2.3.3 Long short-term memory 
505 8 |a 2.3.4 Restricted Boltzmann machine -- 2.3.5 Deep belief networks -- 2.4 Proposed DL framework for neuro disease diagnosis -- 2.4.1 FAST-RCNN -- 2.4.2 Ten fully connected layer -- 2.5 Preprocessing of dataset -- 2.6 Implementation and results -- 2.7 Conclusion -- References -- 3 Intelligent approach for network intrusion detection system (NIDS) utilizing machine learning (ML) -- 3.1 Introduction -- 3.1.1 DoS and DDoS attacks -- 3.1.2 Man-in-the-middle (MitM) attack -- 3.1.3 Phishing and spear-phishing attacks -- 3.1.4 Password attack -- 3.1.5 Eavesdropping attack -- 3.1.6 Malware attack 
505 8 |a 3.2 Related work -- 3.3 Cloud computing -- 3.3.1 Machine learning -- 3.3.2 Exploratory data analysis -- 3.4 Results -- References -- 4 Classification methodologies in healthcare -- 4.1 Introduction -- 4.2 Classification algorithms -- 4.2.1 Statistical data -- 4.2.2 Discriminant analysis -- 4.2.3 Decision tree -- 4.2.4 K-nearest neighbor (KNN) -- 4.2.5 Logistic regression (LR) -- 4.2.6 Bayesian classifier -- 4.2.7 Support vector machine (SVM) -- 4.3 Parameter identification -- 4.3.1 Feature selection for classi cation -- 4.4 Real-time applications 
505 8 |a 4.4.1 Classification of patients based on medical record -- 4.4.2 Predictive analytics and diagnostic analytics based on medical records -- 4.4.3 Classification of diseases based on medical imaging -- 4.4.4 Mixed reality-based automation to help aid aging society -- 4.4.5 Tiny ML-based classification systems for medical gadgets -- 4.4.6 Classification systems for insurance claim management -- 4.4.7 Case study: Inspectra from Perceptra -- 4.4.8 Deep learning for beginners -- References -- 5 Introducing deep learning in medical domain -- 5.1 Introduction -- 5.1.1 DL in a nutshell 
505 8 |a 5.1.2 History of DL in the medical field -- 5.1.3 Benefits of DL in the medical domain -- 5.1.4 Challenges and obstacles of DL in the medical domain -- 5.1.5 Opportunities of DL in the medical field -- 5.2 DL applications in the medical domain -- 5.2.1 Drug discovery and medicine precision -- 5.2.2 Detection of diseases -- 5.2.3 Diagnosing patients -- 5.2.4 Healthcare administration -- 5.3 DL for medical image analysis -- 5.3.1 Medical image detection -- 5.3.2 Medical image recognition -- 5.3.3 Medical image segmentation -- 5.3.4 Medical image registration 
500 |a 5.3.5 Disease diagnosis and quantification 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
590 |a Knovel  |b ACADEMIC - Software Engineering 
590 |a Knovel  |b ACADEMIC - Biochemistry, Biology & Biotechnology 
650 0 |a Artificial intelligence  |x Medical applications. 
650 0 |a Predictive analytics. 
650 6 |a Intelligence artificielle en médecine. 
650 7 |a Artificial intelligence  |x Medical applications  |2 fast 
650 7 |a Predictive analytics  |2 fast 
700 1 |a Kumar, Abhishek,  |d 1989-  |e editor. 
700 1 |a Dubey, Ashutosh Kumar,  |e editor. 
700 1 |a Bhatia, Surbhi,  |d 1988-  |e editor. 
700 1 |a Kumar, Swarn Avinash,  |e editor. 
700 1 |a Le, Dac-Nhuong,  |d 1983-  |e editor.  |1 https://isni.org/isni/0000000493180265 
776 0 8 |i Print version:  |t Evolving predictive analytics in healthcare.  |d Stevenage, Hertfordshire : The Institution of Engineering and Technology, 2022  |z 9781839535116  |w (OCoLC)1338666953 
830 0 |a Healthcare technologies series ;  |v 43. 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpEPAHNAI2/toc  |z Texto completo 
936 |a BATCHLOAD 
938 |a YBP Library Services  |b YANK  |n 303067556 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL29423635 
938 |a EBSCOhost  |b EBSC  |n 3350355 
938 |a Askews and Holts Library Services  |b ASKH  |n AH39813861 
994 |a 92  |b IZTAP