|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_on1343247510 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
220903s2022 enka ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d N$T
|d UIU
|d OCLCF
|d UKAHL
|d UPM
|d VLB
|d YDX
|d OCLCO
|
019 |
|
|
|a 1342500293
|a 1346409111
|
020 |
|
|
|a 9781839535123
|q (electronic bk.)
|
020 |
|
|
|a 1839535121
|q (electronic bk.)
|
020 |
|
|
|z 9781839535116
|
020 |
|
|
|z 1839535113
|
024 |
|
7 |
|a 10.1049/PBHE043E
|2 doi
|
029 |
1 |
|
|a AU@
|b 000072804505
|
035 |
|
|
|a (OCoLC)1343247510
|z (OCoLC)1342500293
|z (OCoLC)1346409111
|
050 |
|
4 |
|a R859.7.A78
|
082 |
0 |
4 |
|a 610.28563
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Evolving predictive analytics in healthcare :
|b new AI techniques for real-time interventions /
|c edited by Abhishek Kumar, Ashutosh Kumar Dubey, Surbhi Bhatia, Swarn Avinash Kumar, Dac-Nhuong Le.
|
264 |
|
1 |
|a London :
|b The Institution of Engineering and Technology,
|c 2022.
|
300 |
|
|
|a 1 online resource :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
336 |
|
|
|a still image
|b sti
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Healthcare technologies series ;
|v 43
|
520 |
|
|
|a This book examines machine learning trends in predictive technology to solve real-time healthcare problems. By using real-time data inputs to build predictive models, this new technology can model disease progression, assist with interventions or predict patient outcomes.
|
505 |
0 |
|
|a Intro -- Title -- Copyright -- Contents -- About the Editors -- 1 COVID-19 detection in X-ray images using customized CNN model -- 1.1 Introduction -- 1.2 Related work -- 1.2.1 Key contributions and proposed work -- 1.3 Materials and methods -- 1.3.1 Feature extraction and selection -- 1.4 Results and discussion -- 1.5 Conclusion and future scope -- References -- 2 Introducing deep learning in medical diagnosis -- 2.1 Introduction -- 2.2 Literature survey -- 2.3 Overview of DL algorithms -- 2.3.1 Convolutional neural network -- 2.3.2 Recurrent neural network -- 2.3.3 Long short-term memory
|
505 |
8 |
|
|a 2.3.4 Restricted Boltzmann machine -- 2.3.5 Deep belief networks -- 2.4 Proposed DL framework for neuro disease diagnosis -- 2.4.1 FAST-RCNN -- 2.4.2 Ten fully connected layer -- 2.5 Preprocessing of dataset -- 2.6 Implementation and results -- 2.7 Conclusion -- References -- 3 Intelligent approach for network intrusion detection system (NIDS) utilizing machine learning (ML) -- 3.1 Introduction -- 3.1.1 DoS and DDoS attacks -- 3.1.2 Man-in-the-middle (MitM) attack -- 3.1.3 Phishing and spear-phishing attacks -- 3.1.4 Password attack -- 3.1.5 Eavesdropping attack -- 3.1.6 Malware attack
|
505 |
8 |
|
|a 3.2 Related work -- 3.3 Cloud computing -- 3.3.1 Machine learning -- 3.3.2 Exploratory data analysis -- 3.4 Results -- References -- 4 Classification methodologies in healthcare -- 4.1 Introduction -- 4.2 Classification algorithms -- 4.2.1 Statistical data -- 4.2.2 Discriminant analysis -- 4.2.3 Decision tree -- 4.2.4 K-nearest neighbor (KNN) -- 4.2.5 Logistic regression (LR) -- 4.2.6 Bayesian classifier -- 4.2.7 Support vector machine (SVM) -- 4.3 Parameter identification -- 4.3.1 Feature selection for classi cation -- 4.4 Real-time applications
|
505 |
8 |
|
|a 4.4.1 Classification of patients based on medical record -- 4.4.2 Predictive analytics and diagnostic analytics based on medical records -- 4.4.3 Classification of diseases based on medical imaging -- 4.4.4 Mixed reality-based automation to help aid aging society -- 4.4.5 Tiny ML-based classification systems for medical gadgets -- 4.4.6 Classification systems for insurance claim management -- 4.4.7 Case study: Inspectra from Perceptra -- 4.4.8 Deep learning for beginners -- References -- 5 Introducing deep learning in medical domain -- 5.1 Introduction -- 5.1.1 DL in a nutshell
|
505 |
8 |
|
|a 5.1.2 History of DL in the medical field -- 5.1.3 Benefits of DL in the medical domain -- 5.1.4 Challenges and obstacles of DL in the medical domain -- 5.1.5 Opportunities of DL in the medical field -- 5.2 DL applications in the medical domain -- 5.2.1 Drug discovery and medicine precision -- 5.2.2 Detection of diseases -- 5.2.3 Diagnosing patients -- 5.2.4 Healthcare administration -- 5.3 DL for medical image analysis -- 5.3.1 Medical image detection -- 5.3.2 Medical image recognition -- 5.3.3 Medical image segmentation -- 5.3.4 Medical image registration
|
500 |
|
|
|a 5.3.5 Disease diagnosis and quantification
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Software Engineering
|
590 |
|
|
|a Knovel
|b ACADEMIC - Biochemistry, Biology & Biotechnology
|
650 |
|
0 |
|a Artificial intelligence
|x Medical applications.
|
650 |
|
0 |
|a Predictive analytics.
|
650 |
|
6 |
|a Intelligence artificielle en médecine.
|
650 |
|
7 |
|a Artificial intelligence
|x Medical applications
|2 fast
|
650 |
|
7 |
|a Predictive analytics
|2 fast
|
700 |
1 |
|
|a Kumar, Abhishek,
|d 1989-
|e editor.
|
700 |
1 |
|
|a Dubey, Ashutosh Kumar,
|e editor.
|
700 |
1 |
|
|a Bhatia, Surbhi,
|d 1988-
|e editor.
|
700 |
1 |
|
|a Kumar, Swarn Avinash,
|e editor.
|
700 |
1 |
|
|a Le, Dac-Nhuong,
|d 1983-
|e editor.
|1 https://isni.org/isni/0000000493180265
|
776 |
0 |
8 |
|i Print version:
|t Evolving predictive analytics in healthcare.
|d Stevenage, Hertfordshire : The Institution of Engineering and Technology, 2022
|z 9781839535116
|w (OCoLC)1338666953
|
830 |
|
0 |
|a Healthcare technologies series ;
|v 43.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpEPAHNAI2/toc
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 303067556
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL29423635
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 3350355
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH39813861
|
994 |
|
|
|a 92
|b IZTAP
|