Cargando…

Structural materials for heavy liquid metal cooled fast reactors : proceedings of a technical meeting.

"The compatibility of structural materials, such as steels with lead and lead-bismuth eutectic, poses a critical challenge in the development of heavy liquid metal (HLM) cooled fast reactors. Factors such as the high temperatures, fast neutron flux and irradiation exposure and corrosiveness pro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Vienna : International Atomic Energy Agency, 2021.
Colección:IAEA-TECDOC ; 1978.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • 1. Introduction
  • 1.1. Background
  • 1.2. Objective
  • 1.3. Scope
  • 1.4. Structure
  • 2. Summary of Meeting Sessions
  • 2.1. Session I: HLM Compatibility with Structural Materials: Phenomena, Modelling and Operational Experience
  • 2.2. Session II: Corrosion Mitigation Measures: Coating, New Structural Materials, Environmental Conditioning
  • 2.3. Session III: Qualification Programmes of Structural Materials for HLM Fast Reactors
  • 3. Summary of Group Discussions
  • 3.1. Group Discussion i: Outstanding Research Challenges
  • 3.2. Group Discusion II: New Materials and Coating Techniques
  • 3.3. Group discussion III: Industrialization
  • 4. Conclusions
  • ABBREVIATIONS
  • PAPERS PRESENTED AT THE MEETING
  • SESSION I: HLM COMPATIBILITY WITH STRUCTURAL MATERIALS: PHENOMENA, MODELLING AND OPERATIONAL EXPERIENCE
  • KINETICS AND MECHANISM OF CRACK INITIATION OF LIQUID METAL EMBRITTLEMENT
  • 1. INTRODUCTION
  • 2. EXPERIMENTAL
  • 2.1. Materials
  • 2.2. Specimens
  • 2.3. Test technique
  • 2.4. Environment
  • 2.5. Post-test evaluation
  • 3. RESULTS I
  • SENSITIVITY TO LME/EAC CRACKING IN HLM
  • 3.1. T91 &amp
  • liquid LBE
  • 3.2. T91 &amp
  • liquid Pb
  • 4. RESULTS II
  • CONDITIONS FOR LME/EAC CRACKING IN HLM: INITIATION
  • 4.1. T91 &amp
  • liquid LBE
  • 4.2. T91 &amp
  • liquid Pb
  • 4.3. Initiation of LME/EAC of T91 in HLM
  • summary
  • 4.4. 15-15Ti in liquid LBE
  • 4.5. 15-15Ti in liquid Pb
  • 5. RESULTS III
  • CONDITIONS FOR LME/EAC CRACKING IN HLM: KINETICS
  • 5.1. Fracture resistance of T91 in liquid LBE
  • 5.2. Crack Growth Rate of T91 in HLM
  • 6. Discussion
  • 7. Conclusions
  • RATEN ICN STATUS ON MECHANICAL PROPERTIES INVESTIGATION OF 316L GENERATION iv CANDIDATE MATERIAL
  • 1. INTRODUCTION
  • 2. EXPERIMENTAL METHOD
  • 3. RESULTS AND DISCUSSION
  • 4. PLANNED WORKS
  • 5. CONCLUSIONS.
  • SIMULATIONS OF SOME STRUCTURAL MATERIALS BEHAVIOR UNDER NEUTRON IRRADIATION
  • 1. INTRODUCTION
  • 2. REACTOR CONFIGURATION AND COMPUTATIONAL TOOLS
  • 3. RESULTS AND DISCUSSION
  • 3.1. Molybdenum Alloys
  • 3.2. Vanadium Alloys
  • 4. CONCLUSIONS
  • VACANCY TYPE DEFECTS BEHAVIOR IN MATERIALS FORESEEN FOR LIQUID METAL COOLED FAST REACTORS
  • RESEARCH OF CORROSION BEHAVIOR OF STEAM GENERATOR TUBES FOR LEAD-COOLED POWER UNIT
  • 1. INTRODUCTION
  • 2. CORROSION RESISTANCE IN LIQUID LEAD
  • 3. CORROSION RESISTANCE IN WATER AND SUPERHEATED STEAM
  • 4. INTERGRANULAR CORROSION RESISTANCE
  • 5. THE MAIN RESULTS AND CONCLUSIONS
  • TENSILE TESTING OF SUB-SIZED T91 STEEL SPECIMENS IN LIQUID LEAD
  • 1. INTRODUCTION
  • 2. THE LILLA FACILITY AND TEST SECTIONS
  • 2.1. The description of the LILLA facility
  • 2.2. The description of the test sections
  • 3. SSRT TESTS OF T91 IN ARGON AND LIQUID LEAD
  • 3.1. Material and test conditions
  • 3.2. Tests in argon and liquid lead
  • 4. CONCLUSIONS
  • SESSION II: CORROSION MITIGATION MEASURES: COATING, NEW STRUCTURAL MATERIALS, ENVIRONMENTAL CONDITIONING
  • CORROSION AND MECHANICAL TESTING OF A LOW ALLOYED ALUMINA FORMING AUSTENITE FOR LIQUID LEAD APPLICATIONS
  • 1. INTRODUCTION
  • 2. MATERIALS AND EXPERIMENTS
  • 2.1. Materials
  • 2.2. Liquid lead corrosion exposures
  • 2.3. Small punch testing
  • 3. RESULTS
  • 3.1. Liquid lead corrosion exposures
  • 3.1.1. 550 C exposures
  • 3.1.2. 600 C exposures
  • 3.2. Small punch testing and aging
  • 4. DISCUSSION
  • 5. CONCLUSIONS
  • ALUMINA NANOCERAMIC COATINGS: AN ENABLING TECHNOLOGY FOR HEAVY LIQUID METAL-COOLED FAST REACTORS
  • 1. INTRODUCTION
  • 1.1. Lead Fast Reactor (LFR) technology: materials perspective
  • 1.2. Mitigation strategy for LFR development: state of the art
  • 2. ALUMINA COATINGS BY PULSED LASER DEPOSITION AND BASIC PROPERTIES.
  • 3. MATERIAL QUALIFICATION FOR lfr APPLICATIONS
  • 3.1. Heavy ion irradiation tests
  • 3.2. Gas permeation tests for tritium confinement
  • 3.3. Corrosion tests
  • 4. SUMMARY AND CONCLUSIONS
  • EVALUATION OF THE HIGH-ENTROPY CR-FE-MN-NI ALLOYS COMPATIBILITY WITH A LIQUID LEAD COOLANT
  • 1. INTRODUCTION
  • 2. MATERIALS AND METHODS
  • 3. RESULTS AND DISCUSSION
  • 4. CONCLUSIONS
  • DESIGN AND MATERIAL SELECTION FOR LEAK-BEFORE BREAK NATURE OF DOUBLE WALLED ONCE THROUGH STEAM GENERATORS IN LEAD-BISMUTH COOLED FAST REACTORS
  • 1. INTRODUCTION
  • 2. STEAM GENERATOR DESIGN AND MATERIALS SELECTION
  • 2.1. Double-walled Once-through Steam Generator Design
  • 2.2. Lead-bismuth side Materials Selection for Double Wall Tubes
  • 2.3. Advanced Corrosion Control
  • 2.3.1. Operation Temperature Reduction
  • 2.3.2. Oxygen Control
  • 2.4. Alumina Forming Austenitic Steel Development
  • 3. LEAK BEFORE BREAK APPROACH
  • 4. SUMMARY AND FUTURE WORK
  • COMPATIBILITY EVALUATION ON STRUCTURAL MATERIALS FOR CLEAR IN OXYGEN CONTROLLED LEAD-BISMUTH EUTECTIC AT 500 C AND 550 C
  • 1. INTRODUCTION
  • 2. EXPERIMENTAL
  • 2.1. Specimen preparation
  • 2.2. Post-test analysis
  • 3. EFFECT OF OXYGEN CONCENTRATIONS IN STATIC LBE ON CORROSION BEHAVIOR
  • 4. LONG-TERM CORROSION BEHAVIOR
  • 5. RESEARCH AND DEVELOPMENT OF SI-CONTAINED STEEL
  • 6. CONCLUSIONS
  • DEVELOPMENT OF ALUMINA FORMING MATERIALS FOR CORROSION MITIGATION IN HEAVY LIQUID METAL COOLED NUCLEAR REACTORS
  • 1. INTRODUCTION
  • 2. CORROSION OF METALLIC MATERIALS IN LEAD ALLOYS AT ELEVATED TEMPERTAURES
  • 3. ADVANCED MITIGATION STRATEGIES
  • 3.1. Surface alloying
  • 3.2. AFA
  • alumina forming austenitic steels
  • 3.3. HEA
  • Alumina forming High Entropy Alloys
  • 3.4. Corrosion tests
  • Set-up and conditions
  • 4. RESULTS AND DISCUSSION
  • 4.1. GESA FeCrAl-surface alloys
  • 4.2. AFA alloys after corrosion test.
  • 4.3. HEA alloys after corrosion test
  • 5. SUMMARY AND OUTLOOK
  • CORROSION OF STEEL CLADDINGS OF FAST REACTORS FUEL ELEMENTS IN THE INTERACTION WITH URANIUM-PLUTONIUM NITRIDE FUEL
  • 1. INTRODUCTION
  • 2. THE EFFECT OF THE CARBON AND OXYGEN IMPURITIES
  • 3. CONCLUSION
  • SESSION III: QUALIFICATION PROGRAMMES OF STRUCTURAL MATERIALS FOR HLM FAST REACTORS
  • QUALIFICATION PROGRAMME OF CANDIDATE MATERIALS FOR ALFRED
  • 1. INTRODUCTION
  • 2. MATERIAL CHOICE AND COOLANT CHEMISTRY STRATEGY
  • 3. MATERIALS QUALIFICATION AND RESULTS
  • 3.1. Al2O3 by PLD
  • 3.2. FeCrAl Aluminizing
  • 3.3. AlTiN coating by Physical Vapor Deposition (PVD)
  • 3.4. Al2O3 by Detonation Gun Spray
  • 3.5. AFA steels
  • 4. SUMMARY AND R&amp
  • D NEEDS
  • SOME NEW R&amp
  • D FOCUS IN STRUCTURE MATERIALS LICENSING FOR THE SVBR-100 REACTOR FACILITIES
  • 1. INTRODUCTION
  • 2. MAIN RESULTS OF MATERIALS CORROSION RESISTANCE JUSTIFICATION FOR SVBR-100 REACTOR
  • 3. MAIN RESULTS OF MATERIALS REACTOR TESTING
  • 4. RESEARCH PROGRAM ON COMPLETION OF JUSTIFICATIONS FOR THE USE OF MATERIALS
  • STATUS OF HLMC TECHNOLOGY AND RELATED MATERIALS RESEARCH IN CHINA INSTITUTE OF ATOMIC ENERGY
  • 1. INTRODUCTION
  • 2. LBE DyNAMIC CORROSION TEST LOOP
  • 2.1. Characteristic of loop design
  • 2.2. Main parameters
  • 2.3. Main components and auxiliary system
  • 2.3.1. Main circuit
  • 2.3.2. Storage tank and LBE supply system
  • 2.3.3. Covering gas and vacuum system
  • 2.3.4. Sampling system
  • 2.3.5. Instrumentation control system
  • 2.4. Current state of the loop
  • 3. LBE ThermoNVECTION LOOP
  • 3.1. Characteristics of loop
  • 3.2. Main parameters
  • 3.3. Current studies performing in the loop
  • 4. LBE STATIC CORROSION TEST APPARATUS
  • 4.1. Characteristic of the apparatus
  • 4.2. Main parameters
  • 4.3. Studies performed in the apparatus
  • 5. CORROSION TESTS IN LBE
  • 5.1. Parameters for corrosion test.
  • 5.2. Test results
  • 5.3. Summary
  • 6. LME EFFECTS ON FM STEEL T91
  • 6.1. Parameters for SSRT test
  • 6.2. Test results
  • 6.3. Summary
  • 7. CONCLUSIONS
  • Appendix
  • MEETING PROGRAMME
  • A.1. Meeting Organization
  • A.2. Meting Sessions
  • A.3. Group Discussions
  • LIST OF PARTICIPANTS
  • CONTRIBUTORS TO DRAFTING AND REVIEW.