Cargando…

Food Processing Technology : Principles and Practice.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Fellows, P. J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology, 2022.
Edición:5th ed.
Colección:Woodhead Publishing Series in Food Science, Technology and Nutrition Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Food Processing Technology
  • Copyright Page
  • Dedication
  • Contents
  • About the book
  • Acknowledgements
  • Introduction
  • 1 Stages in food processing
  • 2 The food industry in the future
  • References
  • Further reading
  • I. Basic principles
  • 1 Properties of foods and principles of processing
  • 1.1 Physical properties
  • 1.1.1 Density and specific gravity
  • 1.1.1.1 Solid foods
  • 1.1.1.2 Liquid foods
  • 1.1.1.3 Gases
  • 1.1.2 Viscosity
  • 1.1.3 Surface activity
  • 1.1.3.1 Sols and gels
  • 1.1.3.2 Emulsions
  • 1.1.3.3 Foams
  • 1.1.4 Water activity
  • 1.2 Biochemical properties
  • 1.2.1 Acids, bases and pH
  • 1.2.2 Redox potential
  • 1.3 Engineering principles
  • 1.3.1 Mass transfer and mass balances
  • 1.3.1.1 Mass balances
  • 1.3.2 Fluid flow
  • 1.3.2.1 Fluid flow through fluidised beds
  • 1.3.3 Phase and glass transitions
  • 1.3.3.1 Phase transition
  • 1.3.3.2 Steam generation
  • 1.3.3.3 Glass transitions
  • 1.3.4 Heat transfer
  • 1.3.4.1 Sensible and latent heat
  • 1.3.4.2 Energy balances
  • 1.3.4.3 Types of heat transfer
  • 1.3.4.4 Conduction
  • 1.3.4.5 Convection
  • 1.3.4.6 Unsteady state heat transfer by conduction and convection
  • 1.3.4.7 Radiation
  • 1.3.5 Types of heat exchangers
  • 1.3.6 Effect of heat on microorganisms and enzymes
  • 1.3.7 Effect of heat on nutritional and sensory characteristics of foods
  • 1.3.7.1 Losses of nutrients
  • 1.3.8 Sources of heat and methods of application to foods
  • 1.3.8.1 Direct heating methods
  • 1.3.8.2 Indirect heating methods
  • 1.3.8.3 Magnetic induction heating
  • 1.3.9 Energy use and methods to reduce energy consumption
  • 1.3.9.1 Energy use in food distribution
  • 1.3.9.2 Reductions in energy use
  • 1.3.9.3 Energy efficiency audits
  • 1.4 Process monitoring and control
  • 1.4.1 Process analytical technology and quality by design
  • 1.4.2 Sensors
  • 1.4.2.1 Biosensors.
  • 1.4.2.2 Spectroscopic sensors
  • 1.4.2.3 Other methods for nondestructive quality analysis of foods
  • 1.4.3 Process controllers
  • 1.4.3.1 Batching and blending
  • 1.4.4 Software developments and the Internet of Things
  • 1.4.5 Neural networks, fuzzy logic and robotics
  • 1.4.5.1 Artificial Neural networks
  • 1.4.5.2 Fuzzy logic
  • 1.4.5.3 Robotics
  • 1.5 Hygienic design and cleaning of processing facilities and equipment
  • 1.5.1 Hygienic design
  • 1.5.1.1 Buildings
  • 1.5.1.2 Layout
  • 1.5.1.3 Utility services
  • 1.5.1.4 Equipment
  • 1.5.2 Cleaning and sanitation
  • 1.5.2.1 Disinfection
  • 1.5.2.2 Methods of cleaning
  • 1.6 Water and waste management
  • References
  • Further reading
  • II. Ambient-temperature processing
  • 2 Raw material preparation
  • 2.1 Cleaning foods
  • 2.1.1 Wet cleaning
  • 2.1.1.1 Methods to remove insects and microorganisms
  • 2.1.2 Dry methods of cleaning
  • 2.1.2.1 Magnetic and electrostatic separators
  • 2.1.2.2 Screens and shape sorters
  • 2.2 Sorting and grading
  • 2.2.1 Shape and size sorting
  • 2.2.1.1 Theory
  • 2.2.1.2 Equipment
  • 2.2.2 Weight sorting
  • 2.2.3 Colour and machine vision sorting and grading systems
  • 2.2.4 Other types of grader
  • 2.3 Peeling and coring
  • 2.3.1 Coring
  • References
  • 3 Extraction and separation of food components
  • 3.1 Centrifugation
  • 3.1.1 Theory
  • 3.1.2 Equipment
  • 3.1.2.1 Separation of immiscible liquids
  • 3.1.2.2 Centrifugal clarifiers
  • 3.1.2.3 Desludging, decanting or dewatering centrifuges
  • 3.2 Filtration
  • 3.2.1 Theory
  • 3.2.2 Equipment
  • 3.2.2.1 Pressure filters
  • 3.2.2.2 Vacuum filters
  • 3.3 Expression
  • 3.3.1 Theory
  • 3.3.2 Equipment
  • 3.3.2.1 Batch presses
  • 3.3.2.2 Continuous presses
  • 3.4 Extraction using solvents
  • 3.4.1 Theory
  • 3.4.2 Solvents
  • 3.4.3 Equipment
  • 3.4.3.1 Single-stage solvent extractors
  • 3.4.3.2 Multistage solvent extractors.
  • 3.4.3.3 Continuous solvent extractors
  • 3.4.4 Development of alternatives to organic solvents
  • 3.4.4.1 Supercritical carbon dioxide
  • Microwave-assisted extraction
  • Ultrasound-assisted extraction
  • Pulse electric field (PEF)-assisted extraction
  • High pressure-assisted extraction
  • Aqueous enzyme extraction
  • 3.5 Membrane separation
  • 3.5.1 Theory
  • 3.5.1.1 Hydrostatic pressure systems
  • 3.5.2 Equipment and applications
  • 3.5.2.1 Reverse osmosis
  • 3.5.2.2 Nanofiltration, ultrafiltration and microfiltration
  • 3.5.2.3 Pervaporation
  • 3.5.3 Types of membrane systems
  • 3.5.3.1 Ion exchange and electrodialysis
  • 3.6 Effects on foods and microorganisms
  • 3.6.1 Effect on microorganisms
  • References
  • 4 Size reduction
  • 4.1 Size reduction of solid foods
  • 4.1.1 Theory
  • 4.1.2 Equipment
  • 4.1.2.1 Cutting, slicing, dicing, mincing, shredding and flaking equipment
  • 4.1.2.2 Milling equipment
  • 4.1.2.3 Ball mills
  • 4.1.2.4 Disc (or plate) mills
  • 4.1.2.5 Hammer mills
  • 4.1.2.6 Jet pulverising mills
  • 4.1.2.7 Roller mills
  • 4.1.2.8 Pulping equipment
  • 4.1.3 Developments in size reduction technology
  • 4.1.4 Effect on foods
  • 4.1.4.1 Sensory characteristics
  • 4.1.4.2 Nutritional value
  • 4.1.5 Effect on microorganisms
  • 4.2 Size reduction in liquid foods
  • 4.2.1 Theory
  • 4.2.2 Emulsifying agents and stabilisers
  • 4.2.3 Equipment
  • 4.2.3.1 Membrane emulsification
  • 4.2.3.2 Pressure homogenisers
  • 4.2.3.3 Rotor-stator (or high-shear) homogenisers and colloid mills
  • 4.2.3.4 Ultrasonic homogenisers
  • 4.2.4 Effect on foods
  • 4.2.4.1 Viscosity or texture
  • 4.2.4.2 Colour, aroma and nutritional value
  • 4.2.5 Effect on microorganisms
  • References
  • 5 Mixing, forming, coating and encapsulation
  • 5.1 Mixing
  • 5.1.1 Theory of solids mixing
  • 5.1.2 Theory of liquids mixing
  • 5.1.3 Gas mixing and blending.
  • 5.1.4 Equipment
  • 5.1.4.1 Mixers for dry powders or particulate solids
  • 5.1.4.2 Mixers for low- or medium-viscosity liquids
  • 5.1.4.3 Mixers for high-viscosity liquids and pastes
  • 5.1.5 Effect on foods and microorganisms
  • 5.2 Forming
  • 5.2.1 Bread moulders
  • 5.2.2 Pie, tart and biscuit formers
  • 5.2.3 Confectionery moulders and depositors
  • 5.2.3.1 Moulding equipment
  • 5.2.3.2 Depositors
  • 5.2.4 Cold extrusion
  • 5.2.5 Three-dimensional food printing
  • 5.2.5.1 Extrusion-based printing (or 'material jetting')
  • 5.2.5.2 Inkjet printing
  • 5.2.5.3 Powder bed fusion
  • 5.2.5.4 Binder jetting
  • 5.2.5.5 Other applications
  • 5.2.5.6 Constraints
  • 5.2.5.7 Four-dimensional food printing
  • 5.3 Coating foods
  • 5.3.1 Coating materials
  • 5.3.1.1 Chocolate and compound coatings
  • 5.3.1.2 Chocolate tempering
  • 5.3.1.3 Compound coatings
  • 5.3.1.4 Batters, powders and breadcrumbs
  • 5.3.2 Equipment
  • 5.3.2.1 Enrobers
  • 5.3.2.2 Dusting or breading equipment
  • 5.3.2.3 Pan coating
  • 5.3.2.4 Hard coatings
  • 5.3.2.5 Soft coatings
  • 5.3.2.6 Chocolate coating
  • 5.3.3 Microencapsulation
  • 5.3.3.1 Liposomes
  • 5.3.3.2 Nanoparticles
  • 5.3.3.3 Packaging applications
  • 5.3.4 Edible barrier coatings
  • References
  • 6 Food biotechnology
  • 6.1 Fermentation technology
  • 6.1.1 Theory
  • 6.1.1.1 Batch culture
  • 6.1.1.2 Continuous culture
  • 6.1.2 Equipment
  • 6.1.2.1 Submerged cultures
  • 6.1.2.2 Temperature control
  • 6.1.2.3 pH control
  • 6.1.2.4 Dissolved oxygen control
  • 6.1.2.5 Agitation control
  • 6.1.2.6 Foaming control
  • 6.1.2.7 Control of medium addition and fermentation time
  • 6.1.2.8 Displays and data logging
  • 6.1.2.9 Automatic control of fermenters
  • 6.1.2.10 Solid substrate fermentations
  • 6.1.2.11 Control of temperature and aeration
  • 6.1.2.12 Moisture content
  • 6.1.2.13 Equipment
  • 6.1.3 Commercial food fermentations.
  • 6.1.4 Effects on foods
  • 6.1.4.1 Sensory characteristics
  • 6.1.4.2 Nutritional value
  • 6.1.4.3 Safety
  • 6.2 Microbial enzymes
  • 6.2.1 Novel enzyme technologies
  • 6.3 Bacteriocins and antimicrobial ingredients
  • 6.3.1 Chitin and chitosans
  • 6.4 Functional foods
  • 6.4.1 Health and nutrition claims and regulation
  • 6.4.2 Probiotic, prebiotic and synbiotic foods
  • 6.5 Genetic modification
  • 6.5.1 Genetically modified food crops
  • 6.5.1.1 Legislation and public perceptions of genetically modified foods
  • 6.5.1.2 Safety testing
  • 6.5.2 Genetically modified microorganisms and their products
  • 6.5.3 Marker-assisted selection
  • 6.6 Nutritional genomics
  • References
  • 7 Minimal processing methods
  • 7.1 Introduction
  • 7.1.1 Hurdle concepts
  • 7.2 High pressure processing
  • 7.2.1 Introduction
  • 7.2.2 Theory
  • 7.2.3 Equipment and operation
  • 7.2.3.1 Operation
  • 7.2.4 Process developments
  • 7.2.4.1 Pulsed HPP systems
  • 7.2.4.2 Combinations of HPP and other minimal processing technologies
  • 7.2.5 Packaging
  • 7.2.6 Effects on food components
  • 7.2.7 Effects on enzymes
  • 7.2.8 Inactivation of microorganisms
  • 7.2.8.1 Effect on parasites and viruses
  • 7.2.9 Regulation
  • 7.2.10 Applications
  • 7.2.10.1 Meat products
  • 7.2.10.2 Seafoods
  • 7.2.10.3 Dairy products
  • 7.2.10.4 Fruit and vegetable products
  • 7.2.10.5 Other potential applications
  • 7.3 Irradiation
  • 7.3.1 Introduction
  • 7.3.2 Theory
  • 7.3.2.1 Dose distribution
  • 7.3.3 Equipment
  • 7.3.4 Measurement of radiation dose
  • 7.3.5 Detection of irradiated foods
  • 7.3.6 Regulation
  • 7.3.7 Applications
  • 7.3.8 Effects on foods
  • 7.3.8.1 Induced radioactivity and radiolytic products
  • 7.3.8.2 Effects on nutritional and sensory properties
  • 7.3.9 Effects on microorganisms
  • 7.3.10 Effects on packaging
  • 7.4 Ozone
  • 7.4.1 Ozone production and use.