Sensor Technologies for Civil Infrastructures : Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment.
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
San Diego :
Elsevier Science & Technology,
2022.
|
Edición: | 2nd ed. |
Colección: | Woodhead Publishing Series in Civil and Structural Engineering Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Sensor Technologies for Civil Infrastructures
- Sensor Technologies for Civil Infrastructures: Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment
- Copyright
- Contents
- List of contributors
- 1
- Introduction and sensor technologies
- 1
- Introduction to sensors and sensing systems for civil infrastructure monitoring and asset management
- 1.1 Introduction to infrastructure sensing
- 1.2 Description of the book organization
- 1.3 Summary
- 1.3.1 Journals
- 1.3.2 Books
- 1.3.3 Conferences
- References
- 2
- Sensor data acquisition systems and architectures
- 2.1 Scope of this chapter
- 2.1.1 General measurement system
- 2.1.2 Sensor module
- 2.2 Concepts in signals and digital sampling
- 2.2.1 Sampling criteria
- 2.2.2 Digitization and encoding
- 2.3 Analog-to-digital conversion
- 2.3.1 Quantization and quantization error
- 2.3.2 Analog-to-digital converter architectures
- 2.4 Digital-to-analog conversion
- 2.5 Data acquisition systems
- 2.5.1 Analog signal considerations
- 2.5.2 Wired digital communications
- 2.6 Optical sensing DAQ system
- 2.6.1 Photodiodes
- 2.6.2 Photodetectors
- 2.6.3 Tunable optical filters
- 2.7 Wireless data acquisition
- 2.8 Summary and future trends
- References
- 3
- Commonly used sensors for civil infrastructures and their associated algorithms
- 3.1 Introduction
- 3.2 Brief review of commonly used sensing technologies
- 3.2.1 Displacement
- 3.2.1.1 Linear variable differential transformers
- 3.2.1.2 Potentiometers
- 3.2.2 Strain
- 3.2.2.1 Piezoresistive
- 3.2.2.2 Vibrating-wire
- 3.2.3 Acceleration
- 3.2.3.1 Force-balance
- 3.2.3.2 Capacitive
- 3.2.3.3 Piezoelectric
- 3.2.4 Environment
- 3.2.4.1 Anemometers
- 3.2.4.2 Thermocouples and resistive thermometers
- 3.2.5 Prevalence of commonly used sensors in SHM systems.
- 3.3 Associated algorithms
- 3.3.1 Displacement sensors
- 3.3.2 Strain gages
- 3.3.3 Accelerometers
- 3.3.3.1 Changes in modal parameters
- 3.3.3.2 Changes in input-output models
- 3.3.3.3 Changes in time response-based models
- 3.3.4 Environmental measurements
- 3.4 Examples of continuous monitoring systems
- 3.5 Conclusions and future trends
- References
- Further reading
- 4
- Piezoelectric transducers
- 4.1 Introduction
- 4.2 Principle of piezoelectricity
- 4.2.1 Definition and categorization of piezoelectricity
- 4.2.2 Operational principle of piezoelectric materials
- 4.2.3 Constitutive equations of piezoelectric materials
- 4.3 Piezoelectric materials and the fabrication of piezoelectric transducers
- 4.3.1 Piezoelectric materials
- 4.3.2 Fabrication of piezoelectric ceramics
- 4.4 Piezoelectric transducers for SHM applications
- 4.5 Bonding effects
- 4.6 Limitations of piezoelectric transducers
- 4.7 SHM techniques using piezoelectric transducers
- 4.7.1 Guided wave techniques
- 4.7.2 Impedance techniques
- 4.7.3 Acoustic emission techniques
- 4.7.4 Piezoelectric transducer self-diagnosis techniques
- 4.8 Applications of piezoelectric transducer-based SHM
- 4.8.1 Bridge structures
- 4.8.2 Aerospace structures
- 4.8.3 Pipeline structures
- 4.8.4 Nuclear power plants
- 4.8.5 Wind turbines
- 4.8.6 Other fields
- 4.9 Future trends
- 4.9.1 High temperature piezoelectric transducers
- 4.9.2 High strain piezoelectric transducers
- 4.9.3 Integration with optic-based SHM techniques
- 4.9.4 Nano-piezoelectric transducers
- 4.9.5 Multifunctional piezoelectric sensing
- 4.9.6 Long-term reliability issue
- 4.10 Chapter summary
- References
- 5
- Optical fiber sensors
- 5.1 Introduction
- 5.2 Properties of optical fibers
- 5.2.1 Optical fiber concepts
- 5.2.2 Sensing mechanisms
- 5.2.3 Sensor packaging.
- 5.2.4 Cables, connectors, and splicing
- 5.3 Common optical fiber sensors
- 5.3.1 Coherent interferometers
- 5.3.2 Low coherence interferometers
- 5.3.3 Fabry- Pérot interferometers
- 5.3.4 Fiber Bragg gratings
- 5.3.5 Brillouin and Raman scattering distributed sensors
- 5.4 Future trends
- 5.4.1 Multicore fiber sensors
- 5.4.2 Microstructured optical fiber sensors
- 5.4.3 Polymer optical fiber sensors
- 5.4.4 Rayleigh scattering distributed sensors
- 5.5 Sources for further advice
- 5.6 Conclusions
- References
- 6
- Acoustic emission sensors for assessing and monitoring civil infrastructures
- 6.1 Introduction
- 6.2 Fundamentals of acoustic emission technique
- 6.3 Interpretation of AE signals
- 6.4 AE localization methods
- 6.5 Severity assessment
- 6.6 AE equipment technology
- 6.7 Field applications and structural health monitoring using AE
- 6.8 Future challenges
- 6.9 Conclusion
- References
- 7
- Radar technology: radio frequency, interferometric, millimeter wave and terahertz sensors for assessing and monitoring ...
- 7.1 Introduction
- 7.2 Radar and millimeter wave sensors
- 7.2.1 GPR principles of operation
- 7.2.2 Fundamentals of systems design
- 7.2.2.1 Range resolution and penetrating depth
- 7.2.3 GPR system design
- 7.2.4 GPR signal processing
- 7.2.4.1 Trace editing and rubber-banding
- 7.2.4.2 Time-zero correction
- 7.2.4.3 Range filtering and cross-range filtering
- 7.2.4.4 Deconvolution
- 7.2.4.5 Migration
- 7.2.4.6 Attribute analysis
- 7.2.4.7 Gain adjustment
- 7.2.4.8 Image analysis
- 7.2.4.9 Region of interest detection
- 7.2.5 Multistatic GPR imaging
- 7.2.6 GPR laboratory and field studies
- 7.3 Terahertz sensors
- 7.3.1 The principles of TDS sensing
- 7.3.2 THz pulse generation
- 7.3.3 THz imaging systems
- 7.4 Conclusions and future trends
- References
- Further reading.
- 8
- Electromagnetic sensors for assessing and monitoring civil infrastructures
- 8.1 Introduction to magnetics and magnetic materials
- 8.2 Introduction to magnetoelasticity
- 8.3 Magnetic sensory technologies
- 8.3.1 Microstructural characterizing using magnetic method
- 8.3.2 Geometric/structural discontinuity (for example, cracks) inspection using magnetic method
- 8.3.3 Anomaly inspection through dynamic magnetic signal (eddy current and Barkhansen noise, and so on)
- 8.3.4 Corrosion monitoring using magnetic method
- 8.3.5 Mapping and characterizing residual stress in steel structures using magnetic method
- 8.3.6 Magnetostrictive sensors
- 8.3.7 Application of magnetoelasticity in tensile stress monitoring
- 8.4 Role of microstructure in magnetization and magnetoelasticity
- 8.5 Magnetoelastic stress sensors for tension monitoring of steel cables
- 8.6 Temperature effects
- 8.7 Eddy current
- 8.8 Removable (portable) elastomagnetic stress sensor
- 8.9 Conclusion and future trends
- References
- 9
- Microelectromechanical systems for assessing and monitoring civil infrastructures
- 9.1 Introduction
- 9.2 Sensor materials and micromachining techniques
- 9.2.1 Sensor materials
- 9.2.2 Micromachining methods
- 9.3 Sensor characteristics
- 9.3.1 Transduction principles
- 9.3.2 Stiction and collapse voltage
- 9.3.3 Squeeze film damping
- 9.3.4 Thin film residual stress
- 9.3.5 Packaging
- 9.4 MEMS sensors for SHM
- 9.4.1 Accelerometer
- 9.4.2 Acoustic emission sensor
- 9.4.3 Strain sensor
- 9.4.4 Corrosion sensor
- 9.4.5 Ultrasonic sensor
- 9.4.6 MEMS in IoT for SHM
- 9.4.7 Multisensor MEMS devices and networks
- 9.5 Application examples
- 9.6 Durability of MEMS sensors for SHM
- 9.7 Current research directions of MEMS sensors for SHM
- 9.8 Further resources
- 9.8.1 MEMS-related books.
- 9.8.2 Commercial manufacturers and foundries
- 9.8.3 Journal resources
- References
- Further reading
- 10
- Laser-based sensing for assessing and monitoring civil infrastructures
- 10.1 Laser-based sensing
- 10.1.1 Introduction
- 10.1.2 Principles of lasers
- 10.1.2.1 Stimulated emission and thermal radiation
- 10.1.2.2 Optical amplification of lights in a medium
- 10.1.3 Laser interferometry or electronic speckle pattern interferometry
- 10.1.4 Laser holographic interferometry
- 10.1.5 Laser digital shearography
- 10.1.6 Laser scanning photogrammetry/LiDAR
- 10.1.7 Laser Doppler vibrometry
- 10.1.8 Laser-ultrasound/laser-acoustic
- 10.1.9 Laser excited/active/spot thermography
- 10.1.10 Laser scabbling/drilling
- 10.1.11 Terrestrial laser scanning
- 10.1.12 Other laser-based techniques
- 10.1.13 Laser safety
- 10.1.14 Summary
- Appendix
- Calculation of the speed of light
- References
- 11
- Vision-based sensing for assessing and monitoring civil infrastructures
- 11.1 Introduction
- 11.2 Vision-based measurement techniques for civil engineering applications
- 11.3 Important issues for vision-based measurement techniques
- 11.3.1 Camera calibration
- 11.3.2 Target and correspondence
- 11.3.3 Camera movement
- 11.4 Applications for vision-based sensing techniques
- 11.4.1 Small-scale building model test
- 11.4.2 Large-scale steel building frame test
- 11.4.3 Wind tunnel bridge sectional model test
- 11.4.4 Bridge cable test
- 11.4.5 Pedestrian bridge test
- 11.5 Conclusions
- Acknowledgment
- References
- 12
- Introduction to wireless sensor networks for monitoring applications: principles, design, and selection
- 12.1 Introduction and motivation
- 12.1.1 State-of-the-practice
- 12.1.2 State-of-the-art
- 12.2 Overview of wireless networks
- 12.3 Hardware design and selection.