Cargando…

Sensor Technologies for Civil Infrastructures : Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lynch, Jerome P.
Otros Autores: Sohn, Hoon, Wang, Ming L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology, 2022.
Edición:2nd ed.
Colección:Woodhead Publishing Series in Civil and Structural Engineering Ser.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Sensor Technologies for Civil Infrastructures
  • Sensor Technologies for Civil Infrastructures: Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment
  • Copyright
  • Contents
  • List of contributors
  • 1
  • Introduction and sensor technologies
  • 1
  • Introduction to sensors and sensing systems for civil infrastructure monitoring and asset management
  • 1.1 Introduction to infrastructure sensing
  • 1.2 Description of the book organization
  • 1.3 Summary
  • 1.3.1 Journals
  • 1.3.2 Books
  • 1.3.3 Conferences
  • References
  • 2
  • Sensor data acquisition systems and architectures
  • 2.1 Scope of this chapter
  • 2.1.1 General measurement system
  • 2.1.2 Sensor module
  • 2.2 Concepts in signals and digital sampling
  • 2.2.1 Sampling criteria
  • 2.2.2 Digitization and encoding
  • 2.3 Analog-to-digital conversion
  • 2.3.1 Quantization and quantization error
  • 2.3.2 Analog-to-digital converter architectures
  • 2.4 Digital-to-analog conversion
  • 2.5 Data acquisition systems
  • 2.5.1 Analog signal considerations
  • 2.5.2 Wired digital communications
  • 2.6 Optical sensing DAQ system
  • 2.6.1 Photodiodes
  • 2.6.2 Photodetectors
  • 2.6.3 Tunable optical filters
  • 2.7 Wireless data acquisition
  • 2.8 Summary and future trends
  • References
  • 3
  • Commonly used sensors for civil infrastructures and their associated algorithms
  • 3.1 Introduction
  • 3.2 Brief review of commonly used sensing technologies
  • 3.2.1 Displacement
  • 3.2.1.1 Linear variable differential transformers
  • 3.2.1.2 Potentiometers
  • 3.2.2 Strain
  • 3.2.2.1 Piezoresistive
  • 3.2.2.2 Vibrating-wire
  • 3.2.3 Acceleration
  • 3.2.3.1 Force-balance
  • 3.2.3.2 Capacitive
  • 3.2.3.3 Piezoelectric
  • 3.2.4 Environment
  • 3.2.4.1 Anemometers
  • 3.2.4.2 Thermocouples and resistive thermometers
  • 3.2.5 Prevalence of commonly used sensors in SHM systems.
  • 3.3 Associated algorithms
  • 3.3.1 Displacement sensors
  • 3.3.2 Strain gages
  • 3.3.3 Accelerometers
  • 3.3.3.1 Changes in modal parameters
  • 3.3.3.2 Changes in input-output models
  • 3.3.3.3 Changes in time response-based models
  • 3.3.4 Environmental measurements
  • 3.4 Examples of continuous monitoring systems
  • 3.5 Conclusions and future trends
  • References
  • Further reading
  • 4
  • Piezoelectric transducers
  • 4.1 Introduction
  • 4.2 Principle of piezoelectricity
  • 4.2.1 Definition and categorization of piezoelectricity
  • 4.2.2 Operational principle of piezoelectric materials
  • 4.2.3 Constitutive equations of piezoelectric materials
  • 4.3 Piezoelectric materials and the fabrication of piezoelectric transducers
  • 4.3.1 Piezoelectric materials
  • 4.3.2 Fabrication of piezoelectric ceramics
  • 4.4 Piezoelectric transducers for SHM applications
  • 4.5 Bonding effects
  • 4.6 Limitations of piezoelectric transducers
  • 4.7 SHM techniques using piezoelectric transducers
  • 4.7.1 Guided wave techniques
  • 4.7.2 Impedance techniques
  • 4.7.3 Acoustic emission techniques
  • 4.7.4 Piezoelectric transducer self-diagnosis techniques
  • 4.8 Applications of piezoelectric transducer-based SHM
  • 4.8.1 Bridge structures
  • 4.8.2 Aerospace structures
  • 4.8.3 Pipeline structures
  • 4.8.4 Nuclear power plants
  • 4.8.5 Wind turbines
  • 4.8.6 Other fields
  • 4.9 Future trends
  • 4.9.1 High temperature piezoelectric transducers
  • 4.9.2 High strain piezoelectric transducers
  • 4.9.3 Integration with optic-based SHM techniques
  • 4.9.4 Nano-piezoelectric transducers
  • 4.9.5 Multifunctional piezoelectric sensing
  • 4.9.6 Long-term reliability issue
  • 4.10 Chapter summary
  • References
  • 5
  • Optical fiber sensors
  • 5.1 Introduction
  • 5.2 Properties of optical fibers
  • 5.2.1 Optical fiber concepts
  • 5.2.2 Sensing mechanisms
  • 5.2.3 Sensor packaging.
  • 5.2.4 Cables, connectors, and splicing
  • 5.3 Common optical fiber sensors
  • 5.3.1 Coherent interferometers
  • 5.3.2 Low coherence interferometers
  • 5.3.3 Fabry- Pérot interferometers
  • 5.3.4 Fiber Bragg gratings
  • 5.3.5 Brillouin and Raman scattering distributed sensors
  • 5.4 Future trends
  • 5.4.1 Multicore fiber sensors
  • 5.4.2 Microstructured optical fiber sensors
  • 5.4.3 Polymer optical fiber sensors
  • 5.4.4 Rayleigh scattering distributed sensors
  • 5.5 Sources for further advice
  • 5.6 Conclusions
  • References
  • 6
  • Acoustic emission sensors for assessing and monitoring civil infrastructures
  • 6.1 Introduction
  • 6.2 Fundamentals of acoustic emission technique
  • 6.3 Interpretation of AE signals
  • 6.4 AE localization methods
  • 6.5 Severity assessment
  • 6.6 AE equipment technology
  • 6.7 Field applications and structural health monitoring using AE
  • 6.8 Future challenges
  • 6.9 Conclusion
  • References
  • 7
  • Radar technology: radio frequency, interferometric, millimeter wave and terahertz sensors for assessing and monitoring ...
  • 7.1 Introduction
  • 7.2 Radar and millimeter wave sensors
  • 7.2.1 GPR principles of operation
  • 7.2.2 Fundamentals of systems design
  • 7.2.2.1 Range resolution and penetrating depth
  • 7.2.3 GPR system design
  • 7.2.4 GPR signal processing
  • 7.2.4.1 Trace editing and rubber-banding
  • 7.2.4.2 Time-zero correction
  • 7.2.4.3 Range filtering and cross-range filtering
  • 7.2.4.4 Deconvolution
  • 7.2.4.5 Migration
  • 7.2.4.6 Attribute analysis
  • 7.2.4.7 Gain adjustment
  • 7.2.4.8 Image analysis
  • 7.2.4.9 Region of interest detection
  • 7.2.5 Multistatic GPR imaging
  • 7.2.6 GPR laboratory and field studies
  • 7.3 Terahertz sensors
  • 7.3.1 The principles of TDS sensing
  • 7.3.2 THz pulse generation
  • 7.3.3 THz imaging systems
  • 7.4 Conclusions and future trends
  • References
  • Further reading.
  • 8
  • Electromagnetic sensors for assessing and monitoring civil infrastructures
  • 8.1 Introduction to magnetics and magnetic materials
  • 8.2 Introduction to magnetoelasticity
  • 8.3 Magnetic sensory technologies
  • 8.3.1 Microstructural characterizing using magnetic method
  • 8.3.2 Geometric/structural discontinuity (for example, cracks) inspection using magnetic method
  • 8.3.3 Anomaly inspection through dynamic magnetic signal (eddy current and Barkhansen noise, and so on)
  • 8.3.4 Corrosion monitoring using magnetic method
  • 8.3.5 Mapping and characterizing residual stress in steel structures using magnetic method
  • 8.3.6 Magnetostrictive sensors
  • 8.3.7 Application of magnetoelasticity in tensile stress monitoring
  • 8.4 Role of microstructure in magnetization and magnetoelasticity
  • 8.5 Magnetoelastic stress sensors for tension monitoring of steel cables
  • 8.6 Temperature effects
  • 8.7 Eddy current
  • 8.8 Removable (portable) elastomagnetic stress sensor
  • 8.9 Conclusion and future trends
  • References
  • 9
  • Microelectromechanical systems for assessing and monitoring civil infrastructures
  • 9.1 Introduction
  • 9.2 Sensor materials and micromachining techniques
  • 9.2.1 Sensor materials
  • 9.2.2 Micromachining methods
  • 9.3 Sensor characteristics
  • 9.3.1 Transduction principles
  • 9.3.2 Stiction and collapse voltage
  • 9.3.3 Squeeze film damping
  • 9.3.4 Thin film residual stress
  • 9.3.5 Packaging
  • 9.4 MEMS sensors for SHM
  • 9.4.1 Accelerometer
  • 9.4.2 Acoustic emission sensor
  • 9.4.3 Strain sensor
  • 9.4.4 Corrosion sensor
  • 9.4.5 Ultrasonic sensor
  • 9.4.6 MEMS in IoT for SHM
  • 9.4.7 Multisensor MEMS devices and networks
  • 9.5 Application examples
  • 9.6 Durability of MEMS sensors for SHM
  • 9.7 Current research directions of MEMS sensors for SHM
  • 9.8 Further resources
  • 9.8.1 MEMS-related books.
  • 9.8.2 Commercial manufacturers and foundries
  • 9.8.3 Journal resources
  • References
  • Further reading
  • 10
  • Laser-based sensing for assessing and monitoring civil infrastructures
  • 10.1 Laser-based sensing
  • 10.1.1 Introduction
  • 10.1.2 Principles of lasers
  • 10.1.2.1 Stimulated emission and thermal radiation
  • 10.1.2.2 Optical amplification of lights in a medium
  • 10.1.3 Laser interferometry or electronic speckle pattern interferometry
  • 10.1.4 Laser holographic interferometry
  • 10.1.5 Laser digital shearography
  • 10.1.6 Laser scanning photogrammetry/LiDAR
  • 10.1.7 Laser Doppler vibrometry
  • 10.1.8 Laser-ultrasound/laser-acoustic
  • 10.1.9 Laser excited/active/spot thermography
  • 10.1.10 Laser scabbling/drilling
  • 10.1.11 Terrestrial laser scanning
  • 10.1.12 Other laser-based techniques
  • 10.1.13 Laser safety
  • 10.1.14 Summary
  • Appendix
  • Calculation of the speed of light
  • References
  • 11
  • Vision-based sensing for assessing and monitoring civil infrastructures
  • 11.1 Introduction
  • 11.2 Vision-based measurement techniques for civil engineering applications
  • 11.3 Important issues for vision-based measurement techniques
  • 11.3.1 Camera calibration
  • 11.3.2 Target and correspondence
  • 11.3.3 Camera movement
  • 11.4 Applications for vision-based sensing techniques
  • 11.4.1 Small-scale building model test
  • 11.4.2 Large-scale steel building frame test
  • 11.4.3 Wind tunnel bridge sectional model test
  • 11.4.4 Bridge cable test
  • 11.4.5 Pedestrian bridge test
  • 11.5 Conclusions
  • Acknowledgment
  • References
  • 12
  • Introduction to wireless sensor networks for monitoring applications: principles, design, and selection
  • 12.1 Introduction and motivation
  • 12.1.1 State-of-the-practice
  • 12.1.2 State-of-the-art
  • 12.2 Overview of wireless networks
  • 12.3 Hardware design and selection.