|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
KNOVEL_on1341454456 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu|||||||| |
008 |
220722s2022 cau o ||| 0 eng d |
040 |
|
|
|a SFB
|b eng
|e rda
|e pn
|c SFB
|d ESU
|d OCLCF
|
020 |
|
|
|a 9780081026977
|q (electronic bk.)
|
020 |
|
|
|a 0081026978
|
020 |
|
|
|z 9780081026960
|
035 |
|
|
|a (OCoLC)1341454456
|
050 |
|
4 |
|a TA410
|
082 |
0 |
4 |
|a 620.110287
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lynch, Jerome P.
|
245 |
1 |
0 |
|a Sensor Technologies for Civil Infrastructures :
|b Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment.
|
250 |
|
|
|a 2nd ed.
|
264 |
|
1 |
|a San Diego :
|b Elsevier Science & Technology,
|c 2022.
|
264 |
|
4 |
|c ©2022.
|
300 |
|
|
|a 1 online resource (678 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Woodhead Publishing Series in Civil and Structural Engineering Ser.
|
505 |
0 |
|
|a Front Cover -- Sensor Technologies for Civil Infrastructures -- Sensor Technologies for Civil Infrastructures: Volume 1: Sensing Hardware and Data Collection Methods for Performance Assessment -- Copyright -- Contents -- List of contributors -- 1 -- Introduction and sensor technologies -- 1 -- Introduction to sensors and sensing systems for civil infrastructure monitoring and asset management -- 1.1 Introduction to infrastructure sensing -- 1.2 Description of the book organization -- 1.3 Summary -- 1.3.1 Journals -- 1.3.2 Books -- 1.3.3 Conferences -- References -- 2 -- Sensor data acquisition systems and architectures -- 2.1 Scope of this chapter -- 2.1.1 General measurement system -- 2.1.2 Sensor module -- 2.2 Concepts in signals and digital sampling -- 2.2.1 Sampling criteria -- 2.2.2 Digitization and encoding -- 2.3 Analog-to-digital conversion -- 2.3.1 Quantization and quantization error -- 2.3.2 Analog-to-digital converter architectures -- 2.4 Digital-to-analog conversion -- 2.5 Data acquisition systems -- 2.5.1 Analog signal considerations -- 2.5.2 Wired digital communications -- 2.6 Optical sensing DAQ system -- 2.6.1 Photodiodes -- 2.6.2 Photodetectors -- 2.6.3 Tunable optical filters -- 2.7 Wireless data acquisition -- 2.8 Summary and future trends -- References -- 3 -- Commonly used sensors for civil infrastructures and their associated algorithms -- 3.1 Introduction -- 3.2 Brief review of commonly used sensing technologies -- 3.2.1 Displacement -- 3.2.1.1 Linear variable differential transformers -- 3.2.1.2 Potentiometers -- 3.2.2 Strain -- 3.2.2.1 Piezoresistive -- 3.2.2.2 Vibrating-wire -- 3.2.3 Acceleration -- 3.2.3.1 Force-balance -- 3.2.3.2 Capacitive -- 3.2.3.3 Piezoelectric -- 3.2.4 Environment -- 3.2.4.1 Anemometers -- 3.2.4.2 Thermocouples and resistive thermometers -- 3.2.5 Prevalence of commonly used sensors in SHM systems.
|
505 |
8 |
|
|a 3.3 Associated algorithms -- 3.3.1 Displacement sensors -- 3.3.2 Strain gages -- 3.3.3 Accelerometers -- 3.3.3.1 Changes in modal parameters -- 3.3.3.2 Changes in input-output models -- 3.3.3.3 Changes in time response-based models -- 3.3.4 Environmental measurements -- 3.4 Examples of continuous monitoring systems -- 3.5 Conclusions and future trends -- References -- Further reading -- 4 -- Piezoelectric transducers -- 4.1 Introduction -- 4.2 Principle of piezoelectricity -- 4.2.1 Definition and categorization of piezoelectricity -- 4.2.2 Operational principle of piezoelectric materials -- 4.2.3 Constitutive equations of piezoelectric materials -- 4.3 Piezoelectric materials and the fabrication of piezoelectric transducers -- 4.3.1 Piezoelectric materials -- 4.3.2 Fabrication of piezoelectric ceramics -- 4.4 Piezoelectric transducers for SHM applications -- 4.5 Bonding effects -- 4.6 Limitations of piezoelectric transducers -- 4.7 SHM techniques using piezoelectric transducers -- 4.7.1 Guided wave techniques -- 4.7.2 Impedance techniques -- 4.7.3 Acoustic emission techniques -- 4.7.4 Piezoelectric transducer self-diagnosis techniques -- 4.8 Applications of piezoelectric transducer-based SHM -- 4.8.1 Bridge structures -- 4.8.2 Aerospace structures -- 4.8.3 Pipeline structures -- 4.8.4 Nuclear power plants -- 4.8.5 Wind turbines -- 4.8.6 Other fields -- 4.9 Future trends -- 4.9.1 High temperature piezoelectric transducers -- 4.9.2 High strain piezoelectric transducers -- 4.9.3 Integration with optic-based SHM techniques -- 4.9.4 Nano-piezoelectric transducers -- 4.9.5 Multifunctional piezoelectric sensing -- 4.9.6 Long-term reliability issue -- 4.10 Chapter summary -- References -- 5 -- Optical fiber sensors -- 5.1 Introduction -- 5.2 Properties of optical fibers -- 5.2.1 Optical fiber concepts -- 5.2.2 Sensing mechanisms -- 5.2.3 Sensor packaging.
|
505 |
8 |
|
|a 5.2.4 Cables, connectors, and splicing -- 5.3 Common optical fiber sensors -- 5.3.1 Coherent interferometers -- 5.3.2 Low coherence interferometers -- 5.3.3 Fabry- Pérot interferometers -- 5.3.4 Fiber Bragg gratings -- 5.3.5 Brillouin and Raman scattering distributed sensors -- 5.4 Future trends -- 5.4.1 Multicore fiber sensors -- 5.4.2 Microstructured optical fiber sensors -- 5.4.3 Polymer optical fiber sensors -- 5.4.4 Rayleigh scattering distributed sensors -- 5.5 Sources for further advice -- 5.6 Conclusions -- References -- 6 -- Acoustic emission sensors for assessing and monitoring civil infrastructures -- 6.1 Introduction -- 6.2 Fundamentals of acoustic emission technique -- 6.3 Interpretation of AE signals -- 6.4 AE localization methods -- 6.5 Severity assessment -- 6.6 AE equipment technology -- 6.7 Field applications and structural health monitoring using AE -- 6.8 Future challenges -- 6.9 Conclusion -- References -- 7 -- Radar technology: radio frequency, interferometric, millimeter wave and terahertz sensors for assessing and monitoring ... -- 7.1 Introduction -- 7.2 Radar and millimeter wave sensors -- 7.2.1 GPR principles of operation -- 7.2.2 Fundamentals of systems design -- 7.2.2.1 Range resolution and penetrating depth -- 7.2.3 GPR system design -- 7.2.4 GPR signal processing -- 7.2.4.1 Trace editing and rubber-banding -- 7.2.4.2 Time-zero correction -- 7.2.4.3 Range filtering and cross-range filtering -- 7.2.4.4 Deconvolution -- 7.2.4.5 Migration -- 7.2.4.6 Attribute analysis -- 7.2.4.7 Gain adjustment -- 7.2.4.8 Image analysis -- 7.2.4.9 Region of interest detection -- 7.2.5 Multistatic GPR imaging -- 7.2.6 GPR laboratory and field studies -- 7.3 Terahertz sensors -- 7.3.1 The principles of TDS sensing -- 7.3.2 THz pulse generation -- 7.3.3 THz imaging systems -- 7.4 Conclusions and future trends -- References -- Further reading.
|
505 |
8 |
|
|a 8 -- Electromagnetic sensors for assessing and monitoring civil infrastructures -- 8.1 Introduction to magnetics and magnetic materials -- 8.2 Introduction to magnetoelasticity -- 8.3 Magnetic sensory technologies -- 8.3.1 Microstructural characterizing using magnetic method -- 8.3.2 Geometric/structural discontinuity (for example, cracks) inspection using magnetic method -- 8.3.3 Anomaly inspection through dynamic magnetic signal (eddy current and Barkhansen noise, and so on) -- 8.3.4 Corrosion monitoring using magnetic method -- 8.3.5 Mapping and characterizing residual stress in steel structures using magnetic method -- 8.3.6 Magnetostrictive sensors -- 8.3.7 Application of magnetoelasticity in tensile stress monitoring -- 8.4 Role of microstructure in magnetization and magnetoelasticity -- 8.5 Magnetoelastic stress sensors for tension monitoring of steel cables -- 8.6 Temperature effects -- 8.7 Eddy current -- 8.8 Removable (portable) elastomagnetic stress sensor -- 8.9 Conclusion and future trends -- References -- 9 -- Microelectromechanical systems for assessing and monitoring civil infrastructures -- 9.1 Introduction -- 9.2 Sensor materials and micromachining techniques -- 9.2.1 Sensor materials -- 9.2.2 Micromachining methods -- 9.3 Sensor characteristics -- 9.3.1 Transduction principles -- 9.3.2 Stiction and collapse voltage -- 9.3.3 Squeeze film damping -- 9.3.4 Thin film residual stress -- 9.3.5 Packaging -- 9.4 MEMS sensors for SHM -- 9.4.1 Accelerometer -- 9.4.2 Acoustic emission sensor -- 9.4.3 Strain sensor -- 9.4.4 Corrosion sensor -- 9.4.5 Ultrasonic sensor -- 9.4.6 MEMS in IoT for SHM -- 9.4.7 Multisensor MEMS devices and networks -- 9.5 Application examples -- 9.6 Durability of MEMS sensors for SHM -- 9.7 Current research directions of MEMS sensors for SHM -- 9.8 Further resources -- 9.8.1 MEMS-related books.
|
505 |
8 |
|
|a 9.8.2 Commercial manufacturers and foundries -- 9.8.3 Journal resources -- References -- Further reading -- 10 -- Laser-based sensing for assessing and monitoring civil infrastructures -- 10.1 Laser-based sensing -- 10.1.1 Introduction -- 10.1.2 Principles of lasers -- 10.1.2.1 Stimulated emission and thermal radiation -- 10.1.2.2 Optical amplification of lights in a medium -- 10.1.3 Laser interferometry or electronic speckle pattern interferometry -- 10.1.4 Laser holographic interferometry -- 10.1.5 Laser digital shearography -- 10.1.6 Laser scanning photogrammetry/LiDAR -- 10.1.7 Laser Doppler vibrometry -- 10.1.8 Laser-ultrasound/laser-acoustic -- 10.1.9 Laser excited/active/spot thermography -- 10.1.10 Laser scabbling/drilling -- 10.1.11 Terrestrial laser scanning -- 10.1.12 Other laser-based techniques -- 10.1.13 Laser safety -- 10.1.14 Summary -- Appendix -- Calculation of the speed of light -- References -- 11 -- Vision-based sensing for assessing and monitoring civil infrastructures -- 11.1 Introduction -- 11.2 Vision-based measurement techniques for civil engineering applications -- 11.3 Important issues for vision-based measurement techniques -- 11.3.1 Camera calibration -- 11.3.2 Target and correspondence -- 11.3.3 Camera movement -- 11.4 Applications for vision-based sensing techniques -- 11.4.1 Small-scale building model test -- 11.4.2 Large-scale steel building frame test -- 11.4.3 Wind tunnel bridge sectional model test -- 11.4.4 Bridge cable test -- 11.4.5 Pedestrian bridge test -- 11.5 Conclusions -- Acknowledgment -- References -- 12 -- Introduction to wireless sensor networks for monitoring applications: principles, design, and selection -- 12.1 Introduction and motivation -- 12.1.1 State-of-the-practice -- 12.1.2 State-of-the-art -- 12.2 Overview of wireless networks -- 12.3 Hardware design and selection.
|
500 |
|
|
|a 12.3.1 Anatomy of a wireless sensor.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Transportation Engineering
|
590 |
|
|
|a Knovel
|b ACADEMIC - Civil Engineering & Construction Materials
|
650 |
|
0 |
|a Materials
|x Testing.
|
650 |
|
0 |
|a Detectors.
|
650 |
|
7 |
|a Detectors.
|2 fast
|0 (OCoLC)fst00891594
|
650 |
|
7 |
|a Materials
|x Testing.
|2 fast
|0 (OCoLC)fst01011882
|
700 |
1 |
|
|a Sohn, Hoon.
|
700 |
1 |
|
|a Wang, Ming L.
|
776 |
0 |
8 |
|i Print version:
|a Lynch, Jerome P.
|t Sensor Technologies for Civil Infrastructures
|d San Diego : Elsevier Science & Technology,c2022
|z 9780081026960
|
830 |
|
0 |
|a Woodhead Publishing Series in Civil and Structural Engineering Ser.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpSTCIVSH1/toc
|z Texto completo
|
994 |
|
|
|a 92
|b IZTAP
|