Cargando…

Thermophysical properties of individual hydrocarbons of petroleum and natural gases : properties, methods, and low-carbon technologies.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grigoriev, Boris A.
Otros Autores: Gerasimov, Anatoly A., Alexandrov, Igor S., Nemzer, Boris
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier Science & Technology, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 2.2.5. Apparatus for determining p, V, T dependences of liquid and gaseous hydrocarbons
  • 2.2.6. Experimental p
  • T results
  • Results of a saturated vapor pressure review
  • Results of the study of hydrocarbons density at atmospheric pressure
  • Results of the study of n-alkanes and cyclohexane specific volumes
  • Density of n-alkanes and cyclohexane at the saturation line
  • Determination of critical parameters of n-alkanes and cyclohexane
  • Local (for liquid and gas phases) and fundamental equations of state
  • Equations of state in the liquid and dense-gas state
  • Mamedov-Akhundov equation of state
  • The analysis of Tait equation of state
  • Analysis of the Tait equation limits of applicability
  • Applying the Tait equation to oils and petroleum products
  • Summary of data on the A and B(T) coefficients for oils and oil products
  • On the analysis of the temperature dependence of the B(T) coefficient of liquids
  • Virial equation of state
  • Fundamental thermal equations of state
  • Method for determining the FES coefficients
  • Calculation of data weights
  • 2.3. Isobaric heat capacity
  • 2.3.1. Apparatus for measuring of liquids at atmospheric pressure in the temperature range 270-450K
  • 2.3.2. Apparatus for measuring of liquids at temperatures 300-470K and pressures 0.1-6.0MPa
  • 2.3.3. Low-temperature calorimetric setup
  • 2.3.4. Flow calorimetric setup
  • Theory of the flow method
  • Description of the flow setup ESD
  • Pressure measurement
  • Measurement of temperature and temperature difference
  • Calorimeters adiabaticity control
  • Substance flow rate measurement
  • Measurement procedure methodology
  • Error estimation of measurement results
  • Conducting control and verification experiments
  • 2.3.5. Experimental results for Cp of liquid hydrocarbons
  • 2.3.6. Experimental results for Cp in wide range of state parameters.
  • General characteristics of the experiment
  • Measurements in the critical region
  • Experimental data initial processing
  • Heat capacity of the liquid and gas phase on the saturation line
  • Heat capacity in the ideal gas state
  • 2.3.7. Caloric properties of hydrocarbons in a wide range of state parameters
  • 2.3.8. Methods for calculating Cp
  • Methods for calculating the isobaric heat capacity of liquid hydrocarbons at elevated pressures
  • Thermodynamic methods for calculating isobaric heat capacity in a wide range of state parameters
  • 2.4. Isochoric heat capacity
  • 2.4.1. Calorimeter design
  • 2.4.2. Preparation of copper oxide
  • 2.4.3. Determining of the calorimeters working volume
  • 2.4.4. Determining the calorimeters heat capacity
  • 2.4.5. Filling the calorimeter with measured substance
  • 2.4.6. Procedure for measuring Cv
  • 2.4.7. Accounting for corrections and uncertainty estimation of the experimental determination of Cv
  • 2.4.8. Experimental results for Cv of hydrocarbons
  • 2.5. Speed of sound
  • 2.5.1. Fundamentals of the pulse-phase method for measuring speeds of sound
  • 2.5.2. Experimental uncertainties of the pulse-phase method
  • 2.5.3. Diffraction corrections of acoustic measurements
  • 2.5.4. Acoustic cell
  • 2.5.5. System for creating and measuring pressure and temperature
  • 2.5.6. Experimental results for speeds of sound in hydrocarbons
  • 2.6. Surface tension
  • 2.6.1. Description of the experimental setup
  • 2.6.2. Preparation of the measuring capillaries
  • 2.6.3. Experiment procedure
  • 2.6.4. Experimental uncertainties of the data
  • 2.6.5. The results for surface tension in hydrocarbons
  • 2.6.6. Analysis and discussion of the experimental results
  • 2.7. Conclusions and recommendations
  • References
  • Chapter 3: Thermodynamic properties on the phase equilibrium lines
  • 3.1. Sublimation point line.
  • 3.1.1. Structure of molecular crystals, polymorphism
  • 3.1.2. Thermodynamic properties in the sublimation region
  • 3.2. Melting point line
  • 3.3. Thermal properties on the saturation line liquid gas
  • 3.3.1. Local equations of state on the ``liquid-gas´´ saturation curve
  • Parameters of characteristic points
  • Analysis of data and equations
  • n-Pentane
  • n-Hexane
  • n-Heptane
  • n-Octane
  • n-Nonane
  • n-Decane
  • n-Undecane
  • n-Dodecane
  • n-Tridecane
  • Aromatic hydrocarbons
  • Cyclohexane
  • 3.3.2. Generalized correlations for calculating vapor pressure
  • 3.3.3. Generalized correlations for calculating densities of saturated liquid n-alkanes
  • 3.3.4. Generalized equation for the predicting densities of saturated gaseous hydrocarbons
  • 3.4. Surface tension
  • 3.5. Caloric properties on the liquid-gas saturation curve
  • 3.5.1. Isobaric heat capacity of saturated liquid phases
  • 3.5.2. Isobaric heat capacity of saturated vapor phases
  • 3.5.3. Enthalpy and entropy on the saturation curve
  • 3.6. Conclusions and recommendations
  • References
  • Chapter 4: Thermodynamic functions of hydrocarbons in the ideal gas state
  • 4.1. Methods for determining the thermodynamic properties in the ideal gas state
  • 4.2. Empirical correlations for calculating the ideal gas functions
  • 4.3. Predictive methods for calculating ideal gas functions of hydrocarbons
  • References
  • Chapter 5: Fundamental equations of state of individual substances
  • 5.1. Overview of fundamental equations of state
  • 5.1.1. Cubic equations of state
  • 5.1.2. Virial equations of state
  • 5.1.3. Equations obtained in the framework of the statistical associating fluids theory (SAFT)
  • Simplified statistical associating fluid theory (SSAFT)
  • Lennard-Jones statistical associating fluid theory (LJ-SAFT)
  • Statistical associating fluid theory for hard spheres (SAFT-HS).
  • Statistical associating fluid theory with variable range (SAFT-VR)
  • 5.1.4. Extended the Benedict-Webb-Rubin equation
  • 5.1.5. Modern fundamental equations of state
  • 5.1.6. Methodology for the analytical calculation of thermodynamic quantities using fundamental equations of state
  • 5.2. Methods of constructing fundamental equations of state based on experimental data of various types
  • 5.2.1. Analysis of the structure and extrapolation behavior of equations of state
  • 5.2.2. Structure of the functional (objective function)
  • 5.2.3. Algorithms for determining coefficients of the equation of state and its functional form
  • Simultaneous optimization algorithm (SIMOPT) by Span and Wagner
  • Algorithm based on the Lemmon random search method
  • 5.3. Fundamental equations of state at the critical point
  • 5.3.1. Crossover equations of state
  • 5.3.2. Kiselev-Friends approach
  • 5.4. Conclusions and recommendations
  • References
  • Chapter 6: Modern fundamental equations of state for the most important hydrocarbons of oil, gas condensates, and ass
  • 6.1. Overview of the published equations of state
  • 6.1.1. Hydrocarbon and associated gases
  • Hydrogen
  • Nitrogen
  • Carbon dioxide
  • Water and water vapor
  • Methane
  • Ethane
  • Propane
  • n-Butane, isobutane
  • 6.1.2. Liquid alkanes
  • n-Pentane
  • Isopentane
  • Neopentane
  • n-Hexane
  • 2-Methylpentane (isohexane)
  • n-Heptane
  • n-Octane
  • n-Nonane
  • n-Decane
  • n-Undecane
  • n-Dodecane
  • n-Tridecane
  • 6.1.3. Cycloalkanes
  • Cyclopentane
  • Cyclohexane
  • 6.1.4. Aromatic hydrocarbons
  • Benzene
  • Ethylbenzene
  • 6.1.5. Modern generalized equations of state
  • Platzer and Maurer equation
  • Span and Wagner equation
  • 6.2. Critical region
  • 6.2.1. Methane
  • 6.2.2. n-Pentane
  • 6.2.3. n-Hexane
  • 6.2.4. n-Heptane
  • 6.2.5. n-Octane
  • 6.2.6. Cyclohexane
  • 6.2.7. Benzene
  • 6.2.8. Toluene.