Cargando…

Methodologies for Seismic Soil-Structure Interaction Analysis in the Design and Assessment of Nuclear Installations

Presents soil-structure interaction (SSI) phenomena and current practices in SSI modelling, simulation methodology and analysis methods for the design and assessment of nuclear installations.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: IAEA
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Vienna : IAEA, 2022.
Colección:IAEA-TECDOC.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • 1. INTRODUCTION
  • 1.1. BACKGROUND
  • 1.2. OBJECTIVE
  • 1.3. SCOPE
  • 1.4. STRUCTURE
  • 2. EVOLUtION of SOIL-STRUCTURE INTERACTION ANALYSIS, Design Considerations and Country PracticeS
  • 2.1. EVOLUTION OF SOIL-STRUCTURE INTERACTION ANALYSIS
  • 2.2. DESIGN CONSIDERATIONS
  • 2.3. NATIONAL PRACTICES
  • 2.3.1. United States of America
  • 2.3.2. France
  • 2.3.3. Canada
  • 2.3.4. Japan
  • 2.3.5. Russian Federation
  • 2.3.6. European Utility Requirements
  • 2.4. REQUIREMENTS AND RECOMMENDATION IN IAEA SAFETY STANDARDS
  • 2.5. SIMPLE, SIMPLIFIED AND DETAILED METHODS, MODELS AND PARAMETERS
  • 3. ELEMENTS OF SOIL-STRUCTURE INTERACTION ANALYSIS
  • 3.1. FREE FIELD GROUND MOTION
  • 3.2. MODELLING SOIL, STRUCTURES AND FOUNDATIONS
  • 3.2.1. Soil for design basis and beyond design basis earthquakes
  • 3.2.2. Structures and soil-structure interaction models
  • 3.2.3. Decisions to be made in modelling soil, structures and foundations
  • 3.3. UNCERTAINTIES
  • 3.3.1. Aleatory uncertainties and epistemic uncertainties
  • 3.3.2. Avoiding double counting of uncertainties
  • 3.3.3. Treating uncertainties in the soil-structure interaction analyses: explicit inclusion and sensitivity studies
  • 4. SITE CONFIGURATION AND SOIL PROPERTIES
  • 4.1. SITE CONFIGURATION AND CHARACTERIZATION
  • 4.2. SOIL BEHAVIOUR
  • 4.3. EXPERIMENTAL DESCRIPTION OF SOIL BEHAVIOUR
  • 4.3.1. Linear viscoelastic model
  • 4.3.2. Nonlinear one-dimensional model
  • 4.3.3. Nonlinear two and three-dimensional models
  • 4.4. ITERATIVE LINEAR MODEL AND ITS LIMITATIONS
  • 4.5. PHYSICAL PARAMETERS
  • 4.6. FIELD MEASUREMENTS AND LABORATORY MEASUREMENTS
  • 4.6.1. Site instrumentation
  • 4.6.2. Field investigations
  • 4.6.3. Laboratory measurements
  • 4.6.4. Comparison of field and laboratory tests
  • 4.6.5. Summary of parameters and measurement techniques
  • 4.7. CALIBRATION AND VALIDATION
  • 4.8. UNCERTAINTIES
  • 4.9. SPATIAL VARIABILITY
  • 5. SEISMIC HAZARD ANALYSIS FOR NUCLEAR INSTALLATIONS
  • 5.1. PSHA PERSPECTIVE
  • 5.2. DSHA PERSPECTIVE
  • 5.3. INTERFACES BETWEEN THE SEISMIC HAZARD ANALYSIS AND THE SOIL-STRUCTURE INTERACTION ANALYSIS TEAMS
  • 6. SEISMIC WAVE FIELDS AND FREE FIELD GROUND MOTIONS
  • 6.1. SEISMIC WAVE FIELDS
  • 6.1.1. Perspective and spatial variability of ground motion
  • 6.1.2. Spatial variability of ground motions
  • 6.2. FREE FIELD GROUND MOTION DEVELOPMENT
  • 6.3. RECORDED DATA
  • 6.3.1. 3-D versus 1-D records/motions
  • 6.3.1.1. Earthquake Ground Motions: Analytical Models
  • 6.3.1.2. Earthquake Ground Motions: Numerical Models
  • 6.3.2. Uncertainties
  • 6.3.2.1. Uncertain sources
  • 6.3.2.2. Uncertain path (rock)
  • 6.3.2.3. Uncertain site (soil)
  • 6.4. SEISMIC WAVE INCOHERENCE
  • 6.4.1. General consideration
  • 6.4.2. Incoherence modelling
  • 6.4.2.1. Incoherence in 3-D
  • 6.4.2.2. Theoretical Assumptions behind SVGM Models
  • 6.4.2.3. Nuclear power plant
  • specific applications
  • 7. SITE RESPONSE ANALYSIS AND SEISMIC INPUT
  • 7.1. OVERVIEW