Interpreting machine learning models : learn model interpretability and explainability methods /
Understand model interpretability methods and apply the most suitable one for your machine learning project. This book details the concepts of machine learning interpretability along with different types of explainability algorithms. You'll begin by reviewing the theoretical aspects of machine...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Nandi, Anirban |
Otros Autores: | Pal, Aditya Kumar |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York, NY :
Apress,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Ejemplares similares
-
Statistical reinforcement learning : modern machine learning approaches /
por: Sugiyama, Masashi, 1974-
Publicado: (2015) -
Pretrain Vision and Large Language Models in Python End-To-end Techniques for Building and Deploying Foundation Models on AWS /
por: Webber, Emily
Publicado: (2023) -
Modern deep learning for tabular data : novel approaches to common modeling problems /
por: Ye, Andre, et al.
Publicado: (2023) -
Optimization for machine learning /
Publicado: (2012) -
Advances in learning theory : methods, models and applications /
Publicado: (2003)