Cargando…

Machine learning with Pyspark : with natural language processing and recommender systems /

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Singh, Pramod (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: California: Apress, [2022]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 KNOVEL_on1290020510
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cnu---unuuu
008 211225s2022 cau o 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |c EBLCP  |d TOH  |d ORMDA  |d OCLCO  |d OCLCF  |d YDX  |d GW5XE  |d OCLCO  |d OCLCQ 
019 |a 1289370197 
020 |a 9781484277775  |q (electronic bk.) 
020 |a 1484277775  |q (electronic bk.) 
020 |z 9781484277768 
020 |z 1484277767 
024 7 |a 10.1007/978-1-4842-7777-5  |2 doi 
029 1 |a AU@  |b 000070439688 
035 |a (OCoLC)1290020510  |z (OCoLC)1289370197 
037 |a 9781484277775  |b O'Reilly Media 
050 4 |a QA76.76.A65  |b S55 2022 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 005.7  |2 23 
049 |a UAMI 
100 1 |a Singh, Pramod,  |e author. 
245 1 0 |a Machine learning with Pyspark :  |b with natural language processing and recommender systems /  |c Pramod Singh. 
250 |a Second edition. 
264 1 |a California:  |b Apress,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems. Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library. After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications What you will learn: Build a spectrum of supervised and unsupervised machine learning algorithms Use PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning library Understand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models Who This Book Is For Data science and machine learning professionals. 
588 |a Description based on online resource; title from digital title page (viewed on February 15, 2022). 
505 0 |a Chapter 1: Introduction to Spark 3.1 -- Chapter 2: Manage Data with PySpark -- Chapter 3: Introduction to Machine Learning -- Chapter 4: Linear Regression with PySpark -- Chapter 5: Logistic Regression with PySpark -- Chapter 6: Ensembling with PySpark -- Chapter 7: Clustering with PySpark -- Chapter 8: Recommendation Engine with PySpark -- Chapter 9: Advanced Feature Engineering with PySpark. 
500 |a Includes index. 
590 |a Knovel  |b ACADEMIC - Software Engineering 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Application software  |x Development. 
650 0 |a Python (Computer program language) 
650 0 |a SPARK (Computer program language) 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Python (Langage de programmation) 
650 7 |a Application software  |x Development.  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a SPARK (Computer program language)  |2 fast  |0 (OCoLC)fst01922197 
776 0 8 |i Print version:  |a Singh, Pramod  |t Machine Learning with Pyspark  |d Berkeley, CA : Apress L. P.,c2021  |z 9781484277768 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpMLPSWNL3/toc  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6824274 
994 |a 92  |b IZTAP