Cargando…

Gas Turbine Blade Cooling.

Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Formato: Electrónico eBook
Idioma:Inglés
Publicado: SAE International.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Table of contents
  • Overview
  • Introduction
  • CHAPTER 1 High Temperature Turbine Design Considerations
  • Material Properties
  • Manufacturing Processes
  • Cooling Techniques
  • Cooling Flow
  • Cooling Air Temperature
  • Mixing Losses
  • Aerodynamic Losses
  • Mechanical Design
  • Mechanical and Thermal Life
  • Metallurgical Stability
  • Coatings
  • Coating Interactions
  • Summary
  • Nomenclature
  • Acknowledgments
  • References
  • CHAPTER 2 Summary of NASA Aerodynamic and Heat Transfer Studies in Turbine Vanes and Blades
  • Aerodynamic Studies
  • Cascade Tests
  • Coolant Hole Angle Orientation
  • Single and Multirow Coolant Ejection
  • Full-Film-Cooled Vane
  • Varying Primary-to-Coolant Temperature Ratio
  • Effect of Ceramic Coating on Vane Efficiency
  • Rotating Stage Tests
  • Description of Turbines
  • Test Results
  • Cooling Studies
  • Flat-Plate Heat Transfer Investigations
  • Cascade and Engine Investigations
  • Summary of Major Results
  • Current Programs
  • Film Cooling
  • Endwall Cooling
  • Impingement Cooling
  • Thermal Barrier Coatings
  • References
  • Symbols
  • Subscripts
  • CHAPTER 3 Cooling Modern Aero Engine Turbine Blades and Vanes
  • Part I by Arthur Hare
  • Extent of Application of Cooling
  • Purposes of Cooling
  • Degree of Cooling
  • Some Effects on Engine Functioning
  • Some Effects on Design
  • Some Effects on Engine Development
  • Effect on Manufacturing Cost
  • Summary
  • Part II by H.H. Malley
  • Turbine Entry Temperature
  • Blade Cooling Level
  • Material Creep Strength
  • Cooling Air Feed System
  • Combustion-Chamber Exit Temperature Traverse
  • Nozzle Guide Vane Cooling
  • Early Standard of Vane
  • Vane with "Jet Cooled" Leading Edge
  • Vane with "Tube Cooling"
  • Turbine Blade Cooling
  • "Triple Pass" Cooling
  • "Double Pass" Cooling
  • "Single Pass" Cooling
  • Turbine Blade Problems
  • Thermal Fatigue
  • Oxidation and Corrosion
  • Creep
  • Future Trends
  • CHAPTER 4 An Investigation of Convective Cooling of Gas Turbine Blades Using Intermittent Cooling Air
  • Introduction
  • Results of Prior Investigations
  • Experimental Results
  • Analysis and Correlation
  • Conclusions
  • Summary
  • References
  • CHAPTER 5 The Prospects of Liquid Cooling for Turbines
  • History of Liquid Cooling
  • Possibilities for Turbine Liquid Cooling
  • A Critique of Demonstrated Liquid-Cooled Turbines
  • Prospects for Turbine Liquid Cooling
  • A Case Study: The Cooled Radial Turbine
  • Cycle Impact of Turbine Cooling
  • Turbine Aerodynamic Design
  • Turbine Cooling
  • Summary
  • References
  • Appendix A Cycle Performance Data for Small Gas Turbine Components
  • Appendix B Typical Turbine Design Calculations
  • Turbine Aerodynamic Design
  • Turbine Cooling Design
  • Nomenclature
  • Subscripts
  • CHAPTER 6 Feasibility Demonstration of a Small Fluid-Cooled Turbine at 2300°F
  • Aero-Thermodynamic Performance
  • Turbine
  • Correction Factor Analysis
  • Turbine Analysis
  • Heat Transfer
  • Discussion