Cargando…

Machining and tribology : processes, surfaces, coolants, and modeling /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pramanik, Alokesh (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Colección:Elsevier series on tribology and surface engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Machining and Tribology
  • The Elsevier Series on Tribology and Surface Engineering
  • Key Features:
  • The Editorial Board
  • Machining and Tribology: Processes, Surfaces, Coolants, andModeling
  • Copyright
  • Contents
  • Contributors
  • Preface
  • 1
  • An introduction to machining tribology
  • 1.1 Introduction
  • 1.2 Friction
  • 1.3 Construction designs for tribometers
  • 1.4 Determination of friction conditions
  • 1.5 Tribological studies
  • 1.5.1 Coefficient of friction
  • 1.5.2 Temperature
  • 1.5.3 Displacement and friction coefficient for the tested tribological pairs
  • 1.5.4 Surface wear after tribological tests
  • 1.6 Summary
  • References
  • 2
  • The underlying mechanisms of coolant contribution in the machining process
  • 2.1 Introduction
  • 2.2 Machining difficulties
  • 2.3 Tool wear
  • 2.4 Machining forces
  • 2.5 Surface integrity
  • 2.5.1 Surface roughness
  • 2.5.2 Visual surface defects
  • 2.5.3 Machined surface metallurgy
  • 2.5.4 Residual stresses
  • 2.6 Conventional coolant and tribology
  • 2.7 High-pressure jet cooling and tribology
  • 2.8 Cryogenic cooling and tribology
  • 2.9 Minimum quantity lubrication cooling and tribology
  • 2.10 Nano cutting fluid in MQL mode and tribology
  • 2.11 Machining of Inconel 718: A case study
  • 2.11.1 Materials and methods
  • 2.11.2 Experimental setups
  • 2.11.2.1 MQL experimental setup
  • 2.11.2.2 HPJ setup
  • 2.11.2.3 Cryogenic setup
  • 2.11.3 Results and discussions
  • 2.11.3.1 Flank wear
  • 2.11.3.2 Surface roughness
  • 2.11.3.3 Cutting force
  • 2.11.3.4 Residual stresses
  • 2.12 Summary
  • References
  • 3
  • Advanced cooling-lubrication technologies in metal machining
  • 3.1 Introduction
  • 3.1.1 Conventional machining
  • 3.1.2 Tool and work interaction
  • 3.1.3 Dry machining
  • 3.1.4 Cooling and lubrication in machining
  • 3.1.5 Functions of cutting fluids.
  • 3.2 Advanced cooling and lubrication technologies
  • 3.2.1 Minimum quantity lubrication
  • 3.2.2 Atomization-based and mist-based cooling
  • 3.2.3 High-pressure cooling
  • 3.2.4 Cryogenic cooling
  • 3.2.5 Air, vapor, and gas cooling
  • 3.2.6 Solid lubricant and nanofluids
  • 3.3 Control parameters
  • 3.3.1 Coolant pressure and flow rate
  • 3.3.2 Nozzle system, position, and orientation
  • 3.3.3 Viscosity, concentration, wettability, and dispersion
  • 3.3.4 Power system and pumps
  • 3.3.5 Recycle and reuse
  • 3.4 Effects on process performance indicators
  • 3.4.1 Machining temperature
  • 3.4.2 Friction
  • 3.4.3 Machining force
  • 3.4.4 Surface quality
  • 3.4.5 Tool wear
  • 3.4.6 Tool life
  • 3.4.7 Power consumption and specific energy
  • 3.4.8 Chips
  • 3.5 Considerations for cutting fluid selection
  • 3.6 Conclusion
  • References
  • 4
  • Abrasive wear during machining of hard nanostructured cermet coatings
  • 4.1 Introduction
  • 4.2 Friction and wear
  • 4.2.1 Abrasive wear
  • 4.3 Materials and methodology
  • 4.3.1 Materials
  • 4.3.2 Methodology
  • 4.4 Results and discussion
  • 4.4.1 Powder characterization
  • 4.4.2 Coating characterization
  • 4.4.3 Three-body abrasion test in dry condition
  • 4.4.3.1 SEM observation of wear scar
  • 4.4.4 Three-body abrasion test in wet condition
  • 4.5 Failure mechanisms
  • 4.6 Conclusions
  • References
  • 5
  • Tribology in (abrasive) water jet machining: A review
  • 5.1 Introduction
  • 5.2 Nozzle wear test procedure
  • 5.2.1 Measurement of wear
  • 5.2.1.1 Bore diameter and weight loss measurement
  • 5.2.1.2 Nozzle bore profiling
  • 5.3 Influence of parameters on nozzle wear
  • 5.3.1 Nozzle length
  • 5.3.2 Inlet angle
  • 5.3.3 Nozzle diameter
  • 5.3.4 Other parameters
  • 5.4 Nozzle wear monitoring
  • 5.5 Conclusion
  • References.
  • 6
  • Modeling and analysis of forces and finishing spot size in the ball end magnetorheological finishing (BEMRF) process
  • 6.1 Introduction
  • 6.1.1 Ball end magnetorheological finishing (BEMRF)
  • 6.1.1.1 BEMRF tool
  • 6.1.1.2 BEMRF parameters
  • 6.1.2 Need for understanding forces and finishing spot size in BEMRF process
  • 6.2 Mechanism of material removal in the BEMRF process
  • 6.2.1 Abrasive wear mechanism
  • 6.3 Modeling of forces
  • 6.3.1 Modeling of magnetic flux density in the working gap
  • 6.3.2 Unit cell model of energized MRP fluid
  • 6.3.3 Modeling of normal force
  • 6.3.4 Modeling of shear force
  • 6.4 Parametric analysis of forces in the BEMRF process
  • 6.4.1 Experimental conditions
  • 6.4.2 Effect of current on forces
  • 6.4.3 Effect of working gap on forces
  • 6.4.4 Effect of spindle speed on forces
  • 6.5 Modeling of finishing spot size in the BEMRF process
  • 6.6 Parametric analysis of finishing spot size in the BEMRF process
  • 6.6.1 Design of experiments
  • 6.6.2 Regression analysis
  • 6.6.3 Effect of spindle speed on finishing spot size
  • 6.6.4 Effect of working gap on finishing spot size
  • 6.6.5 Effect of current on finishing spot size
  • 6.6.6 Comparison of theoretical and experimental results
  • 6.7 Conclusion
  • Exercises
  • References
  • 7
  • Simulation of force, energy, and surface integrity during nanometric machining by molecular dynamics (MD)
  • 7.1 Introduction
  • 7.2 Modeling and simulation methods at an atomistic level
  • 7.2.1 MD model and potential energy function
  • 7.2.2 Model sizes effect
  • 7.2.3 Boundary conditions
  • 7.2.4 Machining parameters
  • 7.2.5 Tool geometric parameters
  • 7.3 Tribological behavior of machining processes
  • 7.3.1 Machining forces and energy evolution
  • 7.3.2 Frictional coefficient
  • 7.3.3 Stress evolution of workpieces
  • 7.3.4 Mechanism and distribution of residual stress.
  • 7.4 Surface generation and subsurface damage
  • 7.4.1 Generation of chips and machined surface
  • 7.4.2 Phase transformation of materials and subsurface damage
  • 7.5 Conclusions
  • References
  • 8
  • Molecular dynamics simulation of friction, lubrication, and tool wear during nanometric machining
  • 8.1 Introduction
  • 8.2 Models and methods
  • 8.2.1 Models
  • 8.2.2 Methods
  • 8.3 Key parameters induced by friction in machining processes
  • 8.3.1 Friction force
  • 3.2 Friction coefficient
  • 8.3.3 Friction heating
  • 8.3.4 Surface integrity
  • 8.3.5 Subsurface damage
  • 8.4 Tribological behavior
  • 8.4.1 Material removal
  • 8.4.2 Tool wear
  • 8.4.3 Lubrication
  • 8.5 Summary
  • Acknowledgments
  • References
  • 9
  • Tribological aspects of different machining processes
  • 9.1 Introduction
  • 9.2 Advanced surface texture parameters for tribological aspects
  • 9.2.1 Arithmetic mean height (Sa)/root mean square height (Sq)
  • 9.2.2 SkParameters
  • 9.2.3 Density of peaks (Spd) and mean peak curvature (Spc)
  • 9.2.4 Skewness (Ssk) and kurtosis (Sku)
  • 9.2.5 Texture aspect ratio (Str) and texture direction (Std) of surface
  • 9.3 Tribological performances in relation to machining processes
  • 9.3.1 Turning
  • 9.3.2 Milling
  • 9.3.3 Grinding
  • 9.3.4 Lapping
  • 9.3.5 Honing
  • 9.4 Surface texturing using micromachining processes
  • 9.5 Tribological behaviors of WC-Co coating
  • 9.6 Summary
  • Acknowledgments
  • References
  • 10
  • Surface texturing for improved tribological performance in deep hole drilling
  • 10.1 Introduction
  • 10.1.1 Deep hole drilling
  • 10.1.1.1 Single-lip deep hole drilling
  • 10.1.1.2 Geometry of single-lip drills
  • 10.1.2 Tribological analysis of DHD process
  • 10.2 Application of microstructures in machining
  • 10.2.1 Methods of fabrication
  • 10.2.2 Effect of texturing on machining performance.