|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
KNOVEL_on1287759959 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m d |
007 |
cr un|---aucuu |
008 |
211104s2021 ne fo 001 0 eng d |
040 |
|
|
|a NLW
|b eng
|c NLW
|d YDX
|d EBLCP
|d OPELS
|d OCLCO
|d OCLCF
|d N$T
|d OCLCO
|d MUU
|d SFB
|d OCLCQ
|
019 |
|
|
|a 1277279802
|a 1280048976
|a 1280103584
|a 1281964260
|a 1281985975
|a 1283852627
|a 1285167623
|
020 |
|
|
|a 0128198907
|q (EPUB)
|
020 |
|
|
|a 9780128198902
|q (electronic bk.)
|
020 |
|
|
|z 9780128198896
|
029 |
1 |
|
|a AU@
|b 000070525797
|
029 |
1 |
|
|a AU@
|b 000070565799
|
035 |
|
|
|a (OCoLC)1287759959
|z (OCoLC)1277279802
|z (OCoLC)1280048976
|z (OCoLC)1280103584
|z (OCoLC)1281964260
|z (OCoLC)1281985975
|z (OCoLC)1283852627
|z (OCoLC)1285167623
|
037 |
|
|
|a 9780128198902
|b Ingram Content Group
|
050 |
|
4 |
|a TJ1075.A2
|
082 |
0 |
4 |
|a 671.35
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Machining and tribology :
|b processes, surfaces, coolants, and modeling /
|c edited by Alokesh Pramanik.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c 2021.
|
300 |
|
|
|a 1 online resource (282 pages).
|
336 |
|
|
|a text
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
490 |
1 |
|
|a Elsevier series on tribology and surface engineering
|
500 |
|
|
|a 1. Introduction to machining tribology Marta Bogdan-Chudy, Piotr Nieslony, and Grzegorz Królczyk 2. The underlying mechanisms of coolant contribution in the machining process Bikash Chandra Behera, Chetan, Sudarsan Ghosh, and P. Venkateswara Rao 3. Advanced cooling-lubrication technologies in metal machining Mozammel Mia, Muhommad Azizur Rahman, Munish Kumar Gupta, Neeraj Sharma, Mohd Danish, and Chander Prakasj 4. Abrasive wear during machining of hard nanostructured cermet coatings A.K. Basak and Alokesh Pramanik 5. Tribology in (abrasive) water jet machining: A review K. Bimla Mardi, A.R. Dixit, Alokesh Pramanik, and A.K. Basak 6. Modeling and analysis of forces and finishing spot size in ball end magnetorheological finishing (BEMRF) process Zafar Alam, Faiz Iqbal, and Sunil Jha 7. Simulation of force, energy, and surface integrity during nanometric machining by molecular dynamics Chenshuo Liu, Pei Chen, and Zhiwei Zhang 8. Molecular dynamics simulation of friction, lubrication, and tool wear during nanometric machining Jia Li, Yuanyuan Tian, and Qihong Fang 9. Tribological aspects of different machining processes Gourhari Ghosh, Mayank Kumar, Ajay M. Sidpara, and P.P. Bandyopadhyay 10. Surface texturing for improved tribological performance in deep hole drilling Akshay Chaudhari, Malarvizhi Sankaranarayanasamy, and A. Senthil Kumar.
|
500 |
|
|
|a Includes index.
|
506 |
1 |
|
|a Legal Deposit;
|c Only available on premises controlled by the deposit library and to one user at any one time;
|e The Legal Deposit Libraries (Non-Print Works) Regulations (UK).
|5 WlAbNL
|
505 |
0 |
|
|a Front Cover -- Machining and Tribology -- The Elsevier Series on Tribology and Surface Engineering -- Key Features: -- The Editorial Board -- Machining and Tribology: Processes, Surfaces, Coolants, andModeling -- Copyright -- Contents -- Contributors -- Preface -- 1 -- An introduction to machining tribology -- 1.1 Introduction -- 1.2 Friction -- 1.3 Construction designs for tribometers -- 1.4 Determination of friction conditions -- 1.5 Tribological studies -- 1.5.1 Coefficient of friction -- 1.5.2 Temperature -- 1.5.3 Displacement and friction coefficient for the tested tribological pairs -- 1.5.4 Surface wear after tribological tests -- 1.6 Summary -- References -- 2 -- The underlying mechanisms of coolant contribution in the machining process -- 2.1 Introduction -- 2.2 Machining difficulties -- 2.3 Tool wear -- 2.4 Machining forces -- 2.5 Surface integrity -- 2.5.1 Surface roughness -- 2.5.2 Visual surface defects -- 2.5.3 Machined surface metallurgy -- 2.5.4 Residual stresses -- 2.6 Conventional coolant and tribology -- 2.7 High-pressure jet cooling and tribology -- 2.8 Cryogenic cooling and tribology -- 2.9 Minimum quantity lubrication cooling and tribology -- 2.10 Nano cutting fluid in MQL mode and tribology -- 2.11 Machining of Inconel 718: A case study -- 2.11.1 Materials and methods -- 2.11.2 Experimental setups -- 2.11.2.1 MQL experimental setup -- 2.11.2.2 HPJ setup -- 2.11.2.3 Cryogenic setup -- 2.11.3 Results and discussions -- 2.11.3.1 Flank wear -- 2.11.3.2 Surface roughness -- 2.11.3.3 Cutting force -- 2.11.3.4 Residual stresses -- 2.12 Summary -- References -- 3 -- Advanced cooling-lubrication technologies in metal machining -- 3.1 Introduction -- 3.1.1 Conventional machining -- 3.1.2 Tool and work interaction -- 3.1.3 Dry machining -- 3.1.4 Cooling and lubrication in machining -- 3.1.5 Functions of cutting fluids.
|
505 |
8 |
|
|a 3.2 Advanced cooling and lubrication technologies -- 3.2.1 Minimum quantity lubrication -- 3.2.2 Atomization-based and mist-based cooling -- 3.2.3 High-pressure cooling -- 3.2.4 Cryogenic cooling -- 3.2.5 Air, vapor, and gas cooling -- 3.2.6 Solid lubricant and nanofluids -- 3.3 Control parameters -- 3.3.1 Coolant pressure and flow rate -- 3.3.2 Nozzle system, position, and orientation -- 3.3.3 Viscosity, concentration, wettability, and dispersion -- 3.3.4 Power system and pumps -- 3.3.5 Recycle and reuse -- 3.4 Effects on process performance indicators -- 3.4.1 Machining temperature -- 3.4.2 Friction -- 3.4.3 Machining force -- 3.4.4 Surface quality -- 3.4.5 Tool wear -- 3.4.6 Tool life -- 3.4.7 Power consumption and specific energy -- 3.4.8 Chips -- 3.5 Considerations for cutting fluid selection -- 3.6 Conclusion -- References -- 4 -- Abrasive wear during machining of hard nanostructured cermet coatings -- 4.1 Introduction -- 4.2 Friction and wear -- 4.2.1 Abrasive wear -- 4.3 Materials and methodology -- 4.3.1 Materials -- 4.3.2 Methodology -- 4.4 Results and discussion -- 4.4.1 Powder characterization -- 4.4.2 Coating characterization -- 4.4.3 Three-body abrasion test in dry condition -- 4.4.3.1 SEM observation of wear scar -- 4.4.4 Three-body abrasion test in wet condition -- 4.5 Failure mechanisms -- 4.6 Conclusions -- References -- 5 -- Tribology in (abrasive) water jet machining: A review -- 5.1 Introduction -- 5.2 Nozzle wear test procedure -- 5.2.1 Measurement of wear -- 5.2.1.1 Bore diameter and weight loss measurement -- 5.2.1.2 Nozzle bore profiling -- 5.3 Influence of parameters on nozzle wear -- 5.3.1 Nozzle length -- 5.3.2 Inlet angle -- 5.3.3 Nozzle diameter -- 5.3.4 Other parameters -- 5.4 Nozzle wear monitoring -- 5.5 Conclusion -- References.
|
505 |
8 |
|
|a 6 -- Modeling and analysis of forces and finishing spot size in the ball end magnetorheological finishing (BEMRF) process -- 6.1 Introduction -- 6.1.1 Ball end magnetorheological finishing (BEMRF) -- 6.1.1.1 BEMRF tool -- 6.1.1.2 BEMRF parameters -- 6.1.2 Need for understanding forces and finishing spot size in BEMRF process -- 6.2 Mechanism of material removal in the BEMRF process -- 6.2.1 Abrasive wear mechanism -- 6.3 Modeling of forces -- 6.3.1 Modeling of magnetic flux density in the working gap -- 6.3.2 Unit cell model of energized MRP fluid -- 6.3.3 Modeling of normal force -- 6.3.4 Modeling of shear force -- 6.4 Parametric analysis of forces in the BEMRF process -- 6.4.1 Experimental conditions -- 6.4.2 Effect of current on forces -- 6.4.3 Effect of working gap on forces -- 6.4.4 Effect of spindle speed on forces -- 6.5 Modeling of finishing spot size in the BEMRF process -- 6.6 Parametric analysis of finishing spot size in the BEMRF process -- 6.6.1 Design of experiments -- 6.6.2 Regression analysis -- 6.6.3 Effect of spindle speed on finishing spot size -- 6.6.4 Effect of working gap on finishing spot size -- 6.6.5 Effect of current on finishing spot size -- 6.6.6 Comparison of theoretical and experimental results -- 6.7 Conclusion -- Exercises -- References -- 7 -- Simulation of force, energy, and surface integrity during nanometric machining by molecular dynamics (MD) -- 7.1 Introduction -- 7.2 Modeling and simulation methods at an atomistic level -- 7.2.1 MD model and potential energy function -- 7.2.2 Model sizes effect -- 7.2.3 Boundary conditions -- 7.2.4 Machining parameters -- 7.2.5 Tool geometric parameters -- 7.3 Tribological behavior of machining processes -- 7.3.1 Machining forces and energy evolution -- 7.3.2 Frictional coefficient -- 7.3.3 Stress evolution of workpieces -- 7.3.4 Mechanism and distribution of residual stress.
|
505 |
8 |
|
|a 7.4 Surface generation and subsurface damage -- 7.4.1 Generation of chips and machined surface -- 7.4.2 Phase transformation of materials and subsurface damage -- 7.5 Conclusions -- References -- 8 -- Molecular dynamics simulation of friction, lubrication, and tool wear during nanometric machining -- 8.1 Introduction -- 8.2 Models and methods -- 8.2.1 Models -- 8.2.2 Methods -- 8.3 Key parameters induced by friction in machining processes -- 8.3.1 Friction force -- 3.2 Friction coefficient -- 8.3.3 Friction heating -- 8.3.4 Surface integrity -- 8.3.5 Subsurface damage -- 8.4 Tribological behavior -- 8.4.1 Material removal -- 8.4.2 Tool wear -- 8.4.3 Lubrication -- 8.5 Summary -- Acknowledgments -- References -- 9 -- Tribological aspects of different machining processes -- 9.1 Introduction -- 9.2 Advanced surface texture parameters for tribological aspects -- 9.2.1 Arithmetic mean height (Sa)/root mean square height (Sq) -- 9.2.2 SkParameters -- 9.2.3 Density of peaks (Spd) and mean peak curvature (Spc) -- 9.2.4 Skewness (Ssk) and kurtosis (Sku) -- 9.2.5 Texture aspect ratio (Str) and texture direction (Std) of surface -- 9.3 Tribological performances in relation to machining processes -- 9.3.1 Turning -- 9.3.2 Milling -- 9.3.3 Grinding -- 9.3.4 Lapping -- 9.3.5 Honing -- 9.4 Surface texturing using micromachining processes -- 9.5 Tribological behaviors of WC-Co coating -- 9.6 Summary -- Acknowledgments -- References -- 10 -- Surface texturing for improved tribological performance in deep hole drilling -- 10.1 Introduction -- 10.1.1 Deep hole drilling -- 10.1.1.1 Single-lip deep hole drilling -- 10.1.1.2 Geometry of single-lip drills -- 10.1.2 Tribological analysis of DHD process -- 10.2 Application of microstructures in machining -- 10.2.1 Methods of fabrication -- 10.2.2 Effect of texturing on machining performance.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Mechanics & Mechanical Engineering
|
650 |
|
0 |
|a Tribology.
|
650 |
|
6 |
|a Tribologie (Technologie)
|
650 |
|
7 |
|a Tribology.
|2 fast
|0 (OCoLC)fst01156503
|
700 |
1 |
|
|a Pramanik, Alokesh,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 0128198893
|z 9780128198896
|w (OCoLC)1237633962
|
830 |
|
0 |
|a Elsevier series on tribology and surface engineering.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpMTPSCM01/toc
|z Texto completo
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302517636
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6784036
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2804251
|
994 |
|
|
|a 92
|b IZTAP
|