Cargando…

Terahertz dielectric resonator antennas for high speed communication and sensing : from theory to design and implementation /

This book covers the theory, modelling, design and implementations of Terahertz Dielectric Resonator Antenna technologies at microwave, terahertz or optical frequencies for future applications in wireless high-speed communication, wireless personal communication and sensor networks. Case studies wit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yaduvanshi, Rajveer S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Institution of Engineering and Technology, 2021.
Colección:IET telecommunications series ; 103.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • About the author
  • Preface
  • 1. Dielectric resonator antennas (DRAs) and its synthesis
  • 1.1 Introduction
  • 1.2 CDRA (cylindrical DRA): design and modeling usingsilicon-radiating element
  • 1.3 Terahertz or quantum devices characteristics
  • 1.4 Terahertz MIMO DRA parameters
  • 1.5 Main functions of terahertz DRA
  • 1.6 THz DRA model design parameters
  • 1.7 Rectangular nano-DRA design parameters
  • 1.8 Conclusion
  • References
  • 2. Dielectric resonator antennas-a comprehensive review
  • 2.1 Introduction
  • 2.2 Propagation of light
  • 2.3 Design of a terahertz dielectric resonator antenna
  • 2.4 Fabrication and testing
  • 2.5 Terahertz antenna far-field radiations: flowchart
  • 2.6 Mathematical analysis of terahertz RDRA
  • 2.7 Approximate analysis of a rectangular quantum antenna
  • 2.8 Terahertz DRA simulation results
  • 2.9 Conclusion
  • References
  • 3. Light-matter interaction in terahertz dielectric resonator antennas (DRA)
  • 3.1 Introduction
  • 3.2 Light-matter interaction theory in a quantum antenna
  • 3.3 Theory of quantum entanglement
  • 3.4 Conclusion
  • Reference
  • 4. Terahertz dielectric resonator antennas design and modeling
  • 4.1 Introduction to terahertz DRA
  • 4.2 Mathematical formulations used to describe working of quantum DRA
  • 4.3 Cylindrical terahertz DRA
  • 4.4 Conical terahertz DRA
  • 4.5 Conclusion
  • References
  • 5. Surface plasmon polytrons (SPP) into terahertz DRA
  • 5.1 Introduction
  • 5.2 Working principle of TDRA
  • 5.3 Terahertz CDRA design and simulations
  • 5.4 Terahertz DRA main features
  • 5.5 Mathematical formulations used in TDRA
  • 5.6 Terahertz DRA applications
  • 5.7 Conclusion
  • References
  • 6. Terahertz conical dielectric resonator antenna-design, simulation and implementations
  • 6.1 Introduction
  • 6.2 Design structure of conical THz DRAs.
  • 6.3 Model-1 multiband conical TDRA
  • 6.4 Mathematical modeling of terahertz conical DRA
  • 6.5 Equivalent electrical circuit of conical terahertz DRA
  • 6.6 Conclusion
  • References
  • 7. Cylindrical terahertz and optical DRA-design and analysis
  • 7.1 Introduction
  • 7.2 Model 2 TCDRA at 10-THz resonant frequency
  • 7.3 Terahertz antennas detailed description
  • 7.4 Theory of terahertz cylindrical DRA and mathematical formulations
  • 7.5 Optical CDRA description
  • 7.6 Conclusion
  • References
  • 8. Spherical terahertz and optical DRA-design and implementations
  • 8.1 Introduction
  • 8.2 Design of terahertz spherical DRA at 511 THz
  • 8.3 Mathematical formulations of terahertz spherical DRA
  • 8.4 Results and discussions
  • 8.5 MIMO (multi-input-multi-output) spherical DRA
  • 8.6 Conclusion
  • References
  • 9. Rectangular terahertz DRA-design, simulation and implementations
  • 9.1 Introduction
  • 9.2 Propagation of light
  • 9.3 Design and simulation of terahertz dielectric resonator antenna
  • 9.4 Synthesis of a terahertz rectangular DRA at optical frequency and its radiation theory
  • 9.5 Mathematical analysis of resonant modes excited into a terahertz rectangular DRA
  • 9.6 Terahertz optical RDRA at 484 THz
  • 9.7 Conclusion
  • References
  • 10. Equivalent circuit analysis on terahertz and optical dielectric resonator antennas (DRAs)
  • 10.1 Introduction
  • 10.2 Quantum DRA-equivalent circuit mathematical analysis for mixed circuits
  • 10.3 Higher order resonant modes
  • 10.4 Bandwidth (BW) of terahertz DRA
  • 10.5 Simulated results based on MATLAB
  • 10.6 Design development and evaluation of NDRA
  • 10.7 Synthesis of NDRA radiation theory
  • 10.8 Drude's model
  • 10.9 MATLAB program
  • 10.10 Conclusion
  • References
  • 11. Optical DRA for retinal applications-next generation DRAs
  • 11.1 Introduction.
  • 11.2 Optical antenna arrays basic requirements
  • 11.3 Optical antenna design
  • 11.4 Entanglement
  • 11.5 Modeling of optical antennas
  • 11.6 Light-matter interaction
  • 11.7 Theory of coupled resonant modes
  • 11.8 Designs of terahertz DRAs simulation results for various shapes
  • 11.9 Conclusion and applications
  • References
  • 12. Conclusion and futuristic vision
  • 12.1 Introduction
  • 12.2 Patient-centric healthcare system outline
  • 12.3 Thumb DRA sensors integrated with patient-centric healthcare system
  • 12.4 Thumb DRA design and implementations
  • 12.5 Conclusion
  • Appendix A: Case studies
  • Appendix B: Terahertz absorbers
  • Appendix C: Antenna measured values in anechoic chamber
  • Appendix D: Dielectric materials and resources
  • Appendix E: Dual-band graphene antenna design and implementation
  • Appendix F: Miniaturization design techniques
  • Appendix G: Gaussian beam feed process
  • Appendix H: Silicon dielectric resonator antenna at 5-THz frequency
  • Appendix I: DRA designing process
  • Appendix J: DRA design case study
  • Appendix K: Vector network analyzer process for calibration
  • Glossary
  • Index.