Data science solutions with Python : fast and scalable models using Keras, Pyspark Mllib, H2O, XGBoost, and scikit-Learn /
Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process. The book covers an in-memory, distribute...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Tshepo, Chris Nokeri |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[United States] :
Apress,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Ejemplares similares
-
Data science solutions with Python : fast and scalable models using Keras, Pyspark Mllib, H2O, XGBoost, and scikit-Learn /
por: Tshepo, Chris Nokeri
Publicado: (2022) -
Hands-on ensemble learning with Python : build highly optimized ensemble machine learning models using scikit-learn and Keras /
por: Kyriakides, George, et al.
Publicado: (2019) -
Hands-on ensemble learning with Python : build highly optimized ensemble machine learning models using scikit-learn and Keras /
por: Kyriakides, George, et al.
Publicado: (2019) -
Hands-On Gradient Boosting with XGBoost and scikit-learn : Perform accessible machine learning and extreme gradient boosting with Python. /
por: Wade, Corey
Publicado: (2020) -
Hands-on machine learning with Python : implement neural network solutions with Scikit-learn and PyTorch /
por: Pajankar, Ashwin, et al.
Publicado: (2022)