Cargando…

The chemistry of inorganic biomaterials /

This book overviews the underlying chemistry behind the most common and cutting-edge inorganic materials in current use, or approaching use, in vivo.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Spicer, Christopher
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Royal Society of Chemistry, [2021]
Colección:Inorganic materials series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Title
  • Copyright
  • Contents
  • Chapter 1 Metallic Implants for Biomedical Applications
  • 1.1 Introduction
  • 1.2 General Approach to Metallic Implant Design and Manufacturing
  • 1.2.1 Selection of Metals
  • 1.2.1.4 Metal vs. Bone
  • 1.2.2 Materials Processing Using 3D Printing
  • 1.2.3 Surface Modification
  • 1.3 Key Properties of Major Types of Metallic Implants
  • 1.3.1 Steels
  • 1.3.2 Co-Cr Alloys
  • 1.3.3 Ti and Ti Alloys
  • 1.3.4 Noble Metals and Alloys
  • 1.3.5 Emerging Biomedical Materials
  • 1.4 Corrosion of Metals In Vitro and In Vivo
  • 1.4.1 Pitting and Crevice Corrosion
  • 1.4.2 Stress Corrosion Cracking and Corrosion Fatigue
  • 1.4.3 Hydrogen Embrittlement and Fretting Corrosion
  • 1.4.4 Galvanic Corrosion and Intergranular Corrosion
  • 1.4.5 Modularity as a Promoter of Corrosion
  • 1.4.6 Passivation and Formation of Protective Oxides
  • 1.4.7 Effect of Temperature and pH on Corrosion
  • 1.5 In Vivo vs. In Vitro Studies of Implant Degradation
  • 1.5.1 Dynamic vs. Static Flow Conditions
  • 1.5.2 Stability of Artificial Bodily Fluids
  • 1.5.3 The Chemical Feedback Loop Between Inflammation and Corrosion
  • 1.5.4 Corrosion in Electrically Active Devices
  • 1.5.5 Effect of Therapies on the In Vivo Corrosion of Implants
  • 1.5.6 Role of Microorganisms in Corrosion and Failure
  • 1.5.7 Protein-mediated Mechanisms of Material Degradation In Vivo
  • 1.6 Physiological Implications of Corrosion and Wear
  • 1.6.1 Interactions Between Macrophages and Metallic Wear Debris
  • 1.6.2 Effect of Metallic Wear Debris on Tissue Regeneration
  • 1.7 Concluding Remarks
  • References
  • Chapter 2 Calcium Phosphate Cements: Structure-related Properties
  • 2.1 Introduction
  • 2.2 Calcium Phosphate Family
  • 2.3 CPCs
  • 2.3.1 Setting Time
  • 2.3.2 Injectability
  • 2.3.3 Porosity
  • 2.3.4 Bioresorbability
  • 2.3.5 Anti-washout Properties
  • 2.4 CaP Nanoparticles
  • 2.4.1 Preparation and Morphologies
  • 2.4.2 Applications
  • 2.5 Setting Reactions
  • 2.6 Influence of the CPC Microstructure on the Dissolution Rate
  • 2.7 Influence of the Microstructure on Bioactivity
  • 2.8 Structure-related Mechanical Properties
  • 2.9 Summary
  • References
  • Chapter 3 Inorganic-Organic Hybrids: Mimicking Native Bone
  • 3.1 Introduction
  • 3.2 Bone as the Native Inorganic-Organic Hybrid Material
  • 3.2.1 The Hierarchical Structure of Bone
  • 3.2.2 Collagen Type I Protein: The Organic Material
  • 3.2.3 Hydroxyapatite Mineral: The Inorganic Material
  • 3.2.4 Development of Collagen Mineralisation in Native Tissues
  • 3.2.5 Bone Tissue Engineering (BTE)
  • 3.2.6 Hybrid Materials for BTE
  • 3.3 Inorganic and Organic Materials for Bone Tissue Engineering
  • 3.3.1 Inorganic Materials
  • 3.3.2 Organic Materials
  • 3.3.3 The Inorganic-Organic Interface
  • 3.3.4 Chemical Surface Modification
  • 3.4 Methods of Hybridising Inorganic-Organic Hybrids
  • 3.4.1 Composites
  • 3.4.2 Hybrids