The chemistry of inorganic biomaterials /
This book overviews the underlying chemistry behind the most common and cutting-edge inorganic materials in current use, or approaching use, in vivo.
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Royal Society of Chemistry,
[2021]
|
Colección: | Inorganic materials series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Title
- Copyright
- Contents
- Chapter 1 Metallic Implants for Biomedical Applications
- 1.1 Introduction
- 1.2 General Approach to Metallic Implant Design and Manufacturing
- 1.2.1 Selection of Metals
- 1.2.1.4 Metal vs. Bone
- 1.2.2 Materials Processing Using 3D Printing
- 1.2.3 Surface Modification
- 1.3 Key Properties of Major Types of Metallic Implants
- 1.3.1 Steels
- 1.3.2 Co-Cr Alloys
- 1.3.3 Ti and Ti Alloys
- 1.3.4 Noble Metals and Alloys
- 1.3.5 Emerging Biomedical Materials
- 1.4 Corrosion of Metals In Vitro and In Vivo
- 1.4.1 Pitting and Crevice Corrosion
- 1.4.2 Stress Corrosion Cracking and Corrosion Fatigue
- 1.4.3 Hydrogen Embrittlement and Fretting Corrosion
- 1.4.4 Galvanic Corrosion and Intergranular Corrosion
- 1.4.5 Modularity as a Promoter of Corrosion
- 1.4.6 Passivation and Formation of Protective Oxides
- 1.4.7 Effect of Temperature and pH on Corrosion
- 1.5 In Vivo vs. In Vitro Studies of Implant Degradation
- 1.5.1 Dynamic vs. Static Flow Conditions
- 1.5.2 Stability of Artificial Bodily Fluids
- 1.5.3 The Chemical Feedback Loop Between Inflammation and Corrosion
- 1.5.4 Corrosion in Electrically Active Devices
- 1.5.5 Effect of Therapies on the In Vivo Corrosion of Implants
- 1.5.6 Role of Microorganisms in Corrosion and Failure
- 1.5.7 Protein-mediated Mechanisms of Material Degradation In Vivo
- 1.6 Physiological Implications of Corrosion and Wear
- 1.6.1 Interactions Between Macrophages and Metallic Wear Debris
- 1.6.2 Effect of Metallic Wear Debris on Tissue Regeneration
- 1.7 Concluding Remarks
- References
- Chapter 2 Calcium Phosphate Cements: Structure-related Properties
- 2.1 Introduction
- 2.2 Calcium Phosphate Family
- 2.3 CPCs
- 2.3.1 Setting Time
- 2.3.2 Injectability
- 2.3.3 Porosity
- 2.3.4 Bioresorbability
- 2.3.5 Anti-washout Properties
- 2.4 CaP Nanoparticles
- 2.4.1 Preparation and Morphologies
- 2.4.2 Applications
- 2.5 Setting Reactions
- 2.6 Influence of the CPC Microstructure on the Dissolution Rate
- 2.7 Influence of the Microstructure on Bioactivity
- 2.8 Structure-related Mechanical Properties
- 2.9 Summary
- References
- Chapter 3 Inorganic-Organic Hybrids: Mimicking Native Bone
- 3.1 Introduction
- 3.2 Bone as the Native Inorganic-Organic Hybrid Material
- 3.2.1 The Hierarchical Structure of Bone
- 3.2.2 Collagen Type I Protein: The Organic Material
- 3.2.3 Hydroxyapatite Mineral: The Inorganic Material
- 3.2.4 Development of Collagen Mineralisation in Native Tissues
- 3.2.5 Bone Tissue Engineering (BTE)
- 3.2.6 Hybrid Materials for BTE
- 3.3 Inorganic and Organic Materials for Bone Tissue Engineering
- 3.3.1 Inorganic Materials
- 3.3.2 Organic Materials
- 3.3.3 The Inorganic-Organic Interface
- 3.3.4 Chemical Surface Modification
- 3.4 Methods of Hybridising Inorganic-Organic Hybrids
- 3.4.1 Composites
- 3.4.2 Hybrids