|
|
|
|
LEADER |
00000cam a22000007c 4500 |
001 |
KNOVEL_on1247676718 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
210424s2021 enka ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d FTB
|d OCLCO
|d STF
|d UKAHL
|d CUV
|d YDX
|d YDXIT
|d N$T
|d OCLCF
|d OCLCO
|d OCLCQ
|d GZM
|d VLB
|d OCLCO
|
019 |
|
|
|a 1246353728
|
020 |
|
|
|a 9781839530821
|q electronic bk.
|
020 |
|
|
|a 1839530820
|q electronic bk.
|
020 |
|
|
|z 9781839530814
|
020 |
|
|
|z 1839530812
|
029 |
1 |
|
|a AU@
|b 000069109445
|
035 |
|
|
|a (OCoLC)1247676718
|z (OCoLC)1246353728
|
050 |
|
4 |
|a Q325.5
|b .Y8 2021eb
|
082 |
0 |
4 |
|a 006.31
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Yu, Hao
|e author
|
245 |
1 |
0 |
|a ReRAM-based machine learning /
|c Hao Yu, Leibin Ni, and Sai Manoj Pudukotai Dinakarrao
|
264 |
|
1 |
|a London :
|b Institution of Engineering & Technology
|c 2021
|
300 |
|
|
|a 1 online resource
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a IET computing series
|v 39
|
588 |
0 |
|
|a Online resource; title from PDF title page (IET, viewed on June 17, 2021)
|
504 |
|
|
|a Includes bibliographical references and index
|
505 |
0 |
|
|a Cover -- Contents -- Acronyms -- Preface -- About the authors -- Part I. Introduction -- 1 Introduction -- 1.1 Introduction -- 1.1.1 Memory wall and powerwall -- 1.1.2 Semiconductor memory -- 1.1.2.1 Memory technologies -- 1.1.2.2 Nanoscale limitations -- 1.1.3 Nonvolatile IMC architecture -- 1.2 Challenges and contributions -- 1.3 Book organization -- 2 The need of in-memory computing -- 2.1 Introduction -- 2.2 Neuromorphic computing devices -- 2.2.1 Resistive random-access memory -- 2.2.2 Spin-transfer-torque magnetic random-access memory -- 2.2.3 Phase change memory
|
505 |
8 |
|
|a 2.3 Characteristics of NVM devices for neuromorphic computing -- 2.4 IMC architectures for machine learning -- 2.4.1 Operating principles of IMC architectures -- 2.4.1.1 In-macro operating schemes -- 2.4.1.2 Architectures for operating schemes -- 2.4.2 Analog and digitized fashion of IMC -- 2.4.3 Analog IMC -- 2.4.3.1 Analog MAC -- 2.4.3.2 Cascading IMC macros -- 2.4.3.3 Bitcell and array design of analog IMC -- 2.4.3.4 Peripheral circuitry of analog IMC -- 2.4.3.5 Challenges of analog IMC -- 2.4.3.6 Trade-offs of analog IMC devices -- 2.4.4 Digitized IMC -- 2.4.5 Literature review of IMC
|
505 |
8 |
|
|a 2.4.5.1 DRAM-based IMCs -- 2.4.5.2 NAND-Flash-based IMCs -- 2.4.5.3 SRAM-based IMCs -- 2.4.5.4 ReRAM-based IMCs -- 2.4.5.5 STT-MRAM-based IMCs -- 2.4.5.6 SOT-MRAM-based IMCs -- 2.5 Analysis of IMC architectures -- 3 The background of ReRAM devices -- 3.1 ReRAM device and SPICE model -- 3.1.1 Drift-type ReRAM device -- 3.1.2 Diffusive-type ReRAM device -- 3.2 ReRAM-crossbar structure -- 3.2.1 Analog and digitized ReRAM crossbar -- 3.2.1.1 Traditional analog ReRAM crossbar -- 3.2.1.2 Digitalized ReRAM crossbar -- 3.2.2 Connection of ReRAM crossbar -- 3.2.2.1 Direct-connected ReRAM
|
505 |
8 |
|
|a 3.2.2.2 One-transistor-one-ReRAM -- 3.2.2.3 One-selector-one-ReRAM -- 3.3 ReRAM-based oscillator -- 3.4 Write-in scheme for multibit ReRAM storage -- 3.4.1 ReRAM data storage -- 3.4.2 Multi-threshold resistance for data storage -- 3.4.3 Write and read -- 3.4.3.1 Write-in method -- 3.4.3.2 Readout method -- 3.4.4 Validation -- 3.4.5 Encoding and 3-bit storage -- 3.4.5.1 Exploration of the memristance range -- 3.4.5.2 Uniform input encoding -- 3.4.5.3 Nonuniform encoding -- 3.5 Logic functional units with ReRAM -- 3.5.1 OR gate -- 3.5.2 AND gate -- 3.6 ReRAM for logic operations
|
505 |
8 |
|
|a 3.6.1 Simulation settings -- 3.6.2 ReRAM-based circuits -- 3.6.2.1 Logic operations -- 3.6.2.2 Readout circuit -- 3.6.3 ReRAM as a computational unit-cum-memory -- Part II. Machine learning accelerators -- 4 The background of machine learning algorithms -- 4.1 SVM-based machine learning -- 4.2 Single-layer feedforward neural network-based machine learning -- 4.2.1 Single-layer feedforward network -- 4.2.1.1 Feature extraction -- 4.2.1.2 Neural network-based learning -- 4.2.1.3 Incremental LS solver-based learning -- 4.2.2 L2-norm-gradient-based learning -- 4.2.2.1 Multilayer neural network
|
505 |
8 |
|
|a 4.2.2.2 Direct-gradient-based L2-norm optimization
|
520 |
|
|
|a Serving as a bridge between researchers in the computing domain and computing hardware designers, this book presents ReRAM techniques for distributed computing using IMC accelerators, ReRAM-based IMC architectures for machine learning (ML) and data-intensive applications, and strategies to map ML designs onto hardware accelerators
|
590 |
|
|
|a Knovel
|b ACADEMIC - Software Engineering
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Nonvolatile random-access memory.
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Ordinateurs
|x Mémoires vives non volatiles.
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Nonvolatile random-access memory
|2 fast
|
650 |
|
7 |
|a AI chips.
|2 inspect
|
650 |
|
7 |
|a compressed sensing.
|2 inspect
|
650 |
|
7 |
|a learning (artificial intelligence)
|2 inspect
|
650 |
|
7 |
|a resistive RAM.
|2 inspect
|
700 |
1 |
|
|a Ni, Leibin
|e author
|
700 |
1 |
|
|a Pudukotai Dinakarrao, Sai Manoj
|e author
|
776 |
0 |
8 |
|i Print version:
|a Yu, Hao.
|t ReRAM-Based Machine Learning.
|d Stevenage : Institution of Engineering & Technology, ©2021
|z 9781839530814
|
830 |
|
0 |
|a IET computing series ;
|v 39
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpRRAMBML6/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37971024
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6551361
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2904434
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 302066015
|
994 |
|
|
|a 92
|b IZTAP
|