Cargando…

ReRAM-based machine learning /

Serving as a bridge between researchers in the computing domain and computing hardware designers, this book presents ReRAM techniques for distributed computing using IMC accelerators, ReRAM-based IMC architectures for machine learning (ML) and data-intensive applications, and strategies to map ML de...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yu, Hao (Autor), Ni, Leibin (Autor), Pudukotai Dinakarrao, Sai Manoj (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Institution of Engineering & Technology 2021
Colección:IET computing series ; 39
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007c 4500
001 KNOVEL_on1247676718
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cn|||||||||
008 210424s2021 enka ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d FTB  |d OCLCO  |d STF  |d UKAHL  |d CUV  |d YDX  |d YDXIT  |d N$T  |d OCLCF  |d OCLCO  |d OCLCQ  |d GZM  |d VLB  |d OCLCO 
019 |a 1246353728 
020 |a 9781839530821  |q electronic bk. 
020 |a 1839530820  |q electronic bk. 
020 |z 9781839530814 
020 |z 1839530812 
029 1 |a AU@  |b 000069109445 
035 |a (OCoLC)1247676718  |z (OCoLC)1246353728 
050 4 |a Q325.5  |b .Y8 2021eb 
082 0 4 |a 006.31 
049 |a UAMI 
100 1 |a Yu, Hao  |e author 
245 1 0 |a ReRAM-based machine learning /  |c Hao Yu, Leibin Ni, and Sai Manoj Pudukotai Dinakarrao 
264 1 |a London :  |b Institution of Engineering & Technology  |c 2021 
300 |a 1 online resource  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a IET computing series  |v 39 
588 0 |a Online resource; title from PDF title page (IET, viewed on June 17, 2021) 
504 |a Includes bibliographical references and index 
505 0 |a Cover -- Contents -- Acronyms -- Preface -- About the authors -- Part I. Introduction -- 1 Introduction -- 1.1 Introduction -- 1.1.1 Memory wall and powerwall -- 1.1.2 Semiconductor memory -- 1.1.2.1 Memory technologies -- 1.1.2.2 Nanoscale limitations -- 1.1.3 Nonvolatile IMC architecture -- 1.2 Challenges and contributions -- 1.3 Book organization -- 2 The need of in-memory computing -- 2.1 Introduction -- 2.2 Neuromorphic computing devices -- 2.2.1 Resistive random-access memory -- 2.2.2 Spin-transfer-torque magnetic random-access memory -- 2.2.3 Phase change memory 
505 8 |a 2.3 Characteristics of NVM devices for neuromorphic computing -- 2.4 IMC architectures for machine learning -- 2.4.1 Operating principles of IMC architectures -- 2.4.1.1 In-macro operating schemes -- 2.4.1.2 Architectures for operating schemes -- 2.4.2 Analog and digitized fashion of IMC -- 2.4.3 Analog IMC -- 2.4.3.1 Analog MAC -- 2.4.3.2 Cascading IMC macros -- 2.4.3.3 Bitcell and array design of analog IMC -- 2.4.3.4 Peripheral circuitry of analog IMC -- 2.4.3.5 Challenges of analog IMC -- 2.4.3.6 Trade-offs of analog IMC devices -- 2.4.4 Digitized IMC -- 2.4.5 Literature review of IMC 
505 8 |a 2.4.5.1 DRAM-based IMCs -- 2.4.5.2 NAND-Flash-based IMCs -- 2.4.5.3 SRAM-based IMCs -- 2.4.5.4 ReRAM-based IMCs -- 2.4.5.5 STT-MRAM-based IMCs -- 2.4.5.6 SOT-MRAM-based IMCs -- 2.5 Analysis of IMC architectures -- 3 The background of ReRAM devices -- 3.1 ReRAM device and SPICE model -- 3.1.1 Drift-type ReRAM device -- 3.1.2 Diffusive-type ReRAM device -- 3.2 ReRAM-crossbar structure -- 3.2.1 Analog and digitized ReRAM crossbar -- 3.2.1.1 Traditional analog ReRAM crossbar -- 3.2.1.2 Digitalized ReRAM crossbar -- 3.2.2 Connection of ReRAM crossbar -- 3.2.2.1 Direct-connected ReRAM 
505 8 |a 3.2.2.2 One-transistor-one-ReRAM -- 3.2.2.3 One-selector-one-ReRAM -- 3.3 ReRAM-based oscillator -- 3.4 Write-in scheme for multibit ReRAM storage -- 3.4.1 ReRAM data storage -- 3.4.2 Multi-threshold resistance for data storage -- 3.4.3 Write and read -- 3.4.3.1 Write-in method -- 3.4.3.2 Readout method -- 3.4.4 Validation -- 3.4.5 Encoding and 3-bit storage -- 3.4.5.1 Exploration of the memristance range -- 3.4.5.2 Uniform input encoding -- 3.4.5.3 Nonuniform encoding -- 3.5 Logic functional units with ReRAM -- 3.5.1 OR gate -- 3.5.2 AND gate -- 3.6 ReRAM for logic operations 
505 8 |a 3.6.1 Simulation settings -- 3.6.2 ReRAM-based circuits -- 3.6.2.1 Logic operations -- 3.6.2.2 Readout circuit -- 3.6.3 ReRAM as a computational unit-cum-memory -- Part II. Machine learning accelerators -- 4 The background of machine learning algorithms -- 4.1 SVM-based machine learning -- 4.2 Single-layer feedforward neural network-based machine learning -- 4.2.1 Single-layer feedforward network -- 4.2.1.1 Feature extraction -- 4.2.1.2 Neural network-based learning -- 4.2.1.3 Incremental LS solver-based learning -- 4.2.2 L2-norm-gradient-based learning -- 4.2.2.1 Multilayer neural network 
505 8 |a 4.2.2.2 Direct-gradient-based L2-norm optimization 
520 |a Serving as a bridge between researchers in the computing domain and computing hardware designers, this book presents ReRAM techniques for distributed computing using IMC accelerators, ReRAM-based IMC architectures for machine learning (ML) and data-intensive applications, and strategies to map ML designs onto hardware accelerators 
590 |a Knovel  |b ACADEMIC - Software Engineering 
650 0 |a Machine learning. 
650 0 |a Nonvolatile random-access memory. 
650 6 |a Apprentissage automatique. 
650 6 |a Ordinateurs  |x Mémoires vives non volatiles. 
650 7 |a Machine learning  |2 fast 
650 7 |a Nonvolatile random-access memory  |2 fast 
650 7 |a AI chips.  |2 inspect 
650 7 |a compressed sensing.  |2 inspect 
650 7 |a learning (artificial intelligence)  |2 inspect 
650 7 |a resistive RAM.  |2 inspect 
700 1 |a Ni, Leibin  |e author 
700 1 |a Pudukotai Dinakarrao, Sai Manoj  |e author 
776 0 8 |i Print version:  |a Yu, Hao.  |t ReRAM-Based Machine Learning.  |d Stevenage : Institution of Engineering & Technology, ©2021  |z 9781839530814 
830 0 |a IET computing series ;  |v 39 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpRRAMBML6/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37971024 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL6551361 
938 |a EBSCOhost  |b EBSC  |n 2904434 
938 |a YBP Library Services  |b YANK  |n 302066015 
994 |a 92  |b IZTAP