E-learning methodologies fundamentals, technologies and applications
This book covers state of the art topics including user modeling for e-learning systems and cloud, IOT, and mobile-based frameworks. It also considers security challenges and ethical conduct using Blockchain technology
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London
The Insitution of Engineering and Technology
2021
|
Colección: | IET computing series ;
40 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Contents
- About the editors
- Preface
- Part I: Introduction and pedagogies of e-learning systems with intelligent techniques
- Part II: Technologies in e-learning
- Part III: Case studies
- Part I: Introduction and pedagogies of e-learning systems with intelligent techniques
- 1 Introduction
- 1.1 Asynchronous learning and synchronous learning
- 1.2 Blended learning, distance learning, and Classroom 2.0
- 1.2.1 E-learning
- 1.2.2 Smart e-learning
- 1.3 Different frameworks of smart e-learning
- 1.3.1 AI in e-learning
- 1.3.2 Mobile learning
- 1.3.3 Cloud-based learning
- 1.3.4 Big data in e-learning
- 1.3.5 IoT framework of e-learning
- 1.3.6 Augmented reality in learning
- 1.4 Gaps in existing frameworks
- 1.5 Conclusion
- References
- 2 Goal-oriented adaptive e-learning
- 2.1 Introduction
- 2.2 Literature survey
- 2.2.1 State-of-the-art
- 2.3 Goal-oriented adaptive e-learning system
- 2.3.1 Goal-oriented course graph structure
- 2.3.1.1 CG components
- 2.3.1.2 Database
- 2.3.2 Registration module
- 2.3.3 Personalized assessment module
- 2.3.3.1 Dynamic learning ability
- 2.3.3.2 Dynamic learning success
- 2.3.4 ACO-based learning path generation
- 2.3.4.1 Objectives
- 2.3.4.2 Time constraint
- 2.3.4.3 Ant colony optimization
- 2.3.5 Persistence into database and self-learning
- 2.4 Experimental results
- 2.4.1 Data preparation
- 2.4.2 Evolution of learning path with regular improvement
- 2.4.2.1 Static learning path
- 2.4.2.2 Dynamic learning paths
- 2.4.3 Evolution of learning path with late improvement
- 2.4.3.1 Static learning path
- 2.4.3.2 Dynamic learning paths
- 2.5 Conclusion
- 2.6 Future scope
- References
- 3 Predicting students' behavioural engagement in microlearning using learning analytics model
- 3.1 Introduction
- 3.2 LA studies
- 3.3 Methods
- 3.4 Results
- 3.4.1 Analysis of using NN
- 3.4.2 Analysis using LR
- 3.5 Comparison analysis using NN and LR
- 3.6 Conclusion
- 3.7 Future scope
- References
- 4 Student performance prediction for adaptive e-learning systems
- 4.1 Introduction
- 4.2 Literature survey
- 4.2.1 Learner profile
- 4.2.2 Soft computing techniques
- 4.3 Methodology
- 4.3.1 Conversion of numeric to intuitionistic fuzzy value
- 4.3.2 Learning style model
- 4.3.3 Personality model
- 4.3.4 Assessment of knowledge level
- 4.3.5 Intuitionistic fuzzy optimization algorithm and KNN classifier
- 4.4 Experimental results
- 4.5 Future work
- 4.6 Conclusion
- References
- Part II: Technologies in e-learning
- 5 AI in e-learning
- 5.1 Artificial intelligence in India
- 5.2 Artificial intelligence in education
- 5.3 AI in e-learning
- 5.4 Analysis and data
- 5.5 Emphasis on the area that needs improvement in e-learning
- 5.6 Creating comprehensive curriculum
- 5.7 Immersive learning
- 5.8 Intelligent tutoring systems