Cargando…

Na-Ion Batteries /

This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Monconduit, Laure, Croguennec, Laurence
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, UK : Hoboken, NJ : ISTE, Ltd. ; Wiley, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Contents
  • Introduction
  • I.1. Why Na-ion batteries?
  • I.2. From the electrodes to the electrolyte for NIBs
  • I.2.1. Positive electrodes
  • I.2.2. Negative electrodes
  • I.2.3. Electrolytes and the solid electrolyte interphase
  • I.3. Future commercialization of NIBs
  • I.4. References
  • 1. Layered NaMO2 for the Positive Electrode
  • 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009
  • 1.2. Crystal structures of layered materials
  • 1.2.1. Crystal structures of synthesizable NaxMO2
  • 1.2.2. Structural changes of O3-NaMO2 by Na extraction
  • 1.2.3. Structural changes of P2-NaxMO2 by Na extraction
  • 1.3. O3-type layered materials
  • 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni)
  • 1.3.2. O3-Na[M, M']O2 (M, M' = transition metals)
  • 1.3.3. Moist air stability of O3-NaMO2 and surface coating
  • 1.4. P2-type layered materials
  • 1.4.1. Practical issues of P2-type materials for Na-ion batteries
  • 1.4.2. P2-Na2/3[Mn, Co, M]O2
  • 1.4.3. P2-Na2/3[Mn, Fe, M]O2
  • 1.4.4. P2-Na2/3[Ni, Mn, M]O2
  • 1.5. Summary and prospects
  • 1.6. Acknowledgments
  • 1.7. References
  • 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries
  • 2.1. Introduction
  • 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries
  • 2.1.2. NASICONs and Na3V2(PO4)2F3
  • 2.2. NASICON structures as model frameworks in sodium-ion battery applications
  • 2.2.1. Compositional diversity from solid electrolytes to electrodes
  • 2.2.2. NASICON-typed materials as electrodes for Na batteries
  • 2.2.3. Na3V2(PO4)3 (NVP)
  • 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications
  • 2.3.1. Structural description and compositional diversity
  • 2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs
  • 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases
  • 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance
  • 2.4. Conclusion and perspectives
  • 2.5. References
  • 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism
  • 3.1. Introduction
  • 3.2. What is a hard carbon?
  • 3.3. Hard carbon synthesis and microstructure
  • 3.3.1. Synthetic precursors-based hard carbon synthesis
  • 3.3.2. Bio-polymers derived hard carbon synthesis
  • 3.3.3. Biomass-based hard carbon synthesis
  • 3.4. Hard carbon characteristics
  • 3.4.1. Hard carbon structure
  • 3.4.2. Hard carbon porosity
  • 3.4.3. Hard carbon surface chemistry
  • 3.4.4. Hard carbon structural defects
  • 3.5. Electrochemical performance
  • 3.5.1. Materials performance
  • 3.5.2. Full Na-ion system performance
  • 3.5.3. Sodium insertion mechanisms in hard carbon
  • 3.6. Conclusion
  • 3.7. References
  • 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries