Na-Ion Batteries /
This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, UK : Hoboken, NJ :
ISTE, Ltd. ; Wiley,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover
- Half-Title Page
- Title Page
- Copyright Page
- Contents
- Introduction
- I.1. Why Na-ion batteries?
- I.2. From the electrodes to the electrolyte for NIBs
- I.2.1. Positive electrodes
- I.2.2. Negative electrodes
- I.2.3. Electrolytes and the solid electrolyte interphase
- I.3. Future commercialization of NIBs
- I.4. References
- 1. Layered NaMO2 for the Positive Electrode
- 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009
- 1.2. Crystal structures of layered materials
- 1.2.1. Crystal structures of synthesizable NaxMO2
- 1.2.2. Structural changes of O3-NaMO2 by Na extraction
- 1.2.3. Structural changes of P2-NaxMO2 by Na extraction
- 1.3. O3-type layered materials
- 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni)
- 1.3.2. O3-Na[M, M']O2 (M, M' = transition metals)
- 1.3.3. Moist air stability of O3-NaMO2 and surface coating
- 1.4. P2-type layered materials
- 1.4.1. Practical issues of P2-type materials for Na-ion batteries
- 1.4.2. P2-Na2/3[Mn, Co, M]O2
- 1.4.3. P2-Na2/3[Mn, Fe, M]O2
- 1.4.4. P2-Na2/3[Ni, Mn, M]O2
- 1.5. Summary and prospects
- 1.6. Acknowledgments
- 1.7. References
- 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries
- 2.1. Introduction
- 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries
- 2.1.2. NASICONs and Na3V2(PO4)2F3
- 2.2. NASICON structures as model frameworks in sodium-ion battery applications
- 2.2.1. Compositional diversity from solid electrolytes to electrodes
- 2.2.2. NASICON-typed materials as electrodes for Na batteries
- 2.2.3. Na3V2(PO4)3 (NVP)
- 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications
- 2.3.1. Structural description and compositional diversity
- 2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs
- 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases
- 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance
- 2.4. Conclusion and perspectives
- 2.5. References
- 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism
- 3.1. Introduction
- 3.2. What is a hard carbon?
- 3.3. Hard carbon synthesis and microstructure
- 3.3.1. Synthetic precursors-based hard carbon synthesis
- 3.3.2. Bio-polymers derived hard carbon synthesis
- 3.3.3. Biomass-based hard carbon synthesis
- 3.4. Hard carbon characteristics
- 3.4.1. Hard carbon structure
- 3.4.2. Hard carbon porosity
- 3.4.3. Hard carbon surface chemistry
- 3.4.4. Hard carbon structural defects
- 3.5. Electrochemical performance
- 3.5.1. Materials performance
- 3.5.2. Full Na-ion system performance
- 3.5.3. Sodium insertion mechanisms in hard carbon
- 3.6. Conclusion
- 3.7. References
- 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries