|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
KNOVEL_on1243533485 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
210327s2021 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d N$T
|d OCLCO
|d OCLCF
|d DG1
|d YDX
|d OCLCQ
|d WSU
|
019 |
|
|
|a 1241666095
|
020 |
|
|
|a 9781119818069
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 1119818060
|q (electronic bk. ;
|q oBook)
|
020 |
|
|
|a 9781119818052
|q (electronic bk.)
|
020 |
|
|
|a 1119818052
|q (electronic bk.)
|
020 |
|
|
|z 1789450136
|
020 |
|
|
|z 9781789450132
|
024 |
7 |
|
|a 10.1002/9781119818069
|2 doi
|
029 |
1 |
|
|a AU@
|b 000069150919
|
035 |
|
|
|a (OCoLC)1243533485
|z (OCoLC)1241666095
|
050 |
|
4 |
|a TK2945.S62
|
082 |
0 |
4 |
|a 621.31242
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Na-Ion Batteries /
|c Coordinated by Laure Monconduit, Laurence Croguennec.
|
264 |
|
1 |
|a London, UK :
|b ISTE, Ltd. ;
|a Hoboken, NJ :
|b Wiley,
|c 2021.
|
300 |
|
|
|a 1 online resource (375 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Introduction -- I.1. Why Na-ion batteries? -- I.2. From the electrodes to the electrolyte for NIBs -- I.2.1. Positive electrodes -- I.2.2. Negative electrodes -- I.2.3. Electrolytes and the solid electrolyte interphase -- I.3. Future commercialization of NIBs -- I.4. References -- 1. Layered NaMO2 for the Positive Electrode -- 1.1. Research history of layered transition metal oxides as electrode materials for Na-ion batteries until 2009 -- 1.2. Crystal structures of layered materials
|
505 |
8 |
|
|a 1.2.1. Crystal structures of synthesizable NaxMO2 -- 1.2.2. Structural changes of O3-NaMO2 by Na extraction -- 1.2.3. Structural changes of P2-NaxMO2 by Na extraction -- 1.3. O3-type layered materials -- 1.3.1. NaMO2 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) -- 1.3.2. O3-Na[M, M']O2 (M, M' = transition metals) -- 1.3.3. Moist air stability of O3-NaMO2 and surface coating -- 1.4. P2-type layered materials -- 1.4.1. Practical issues of P2-type materials for Na-ion batteries -- 1.4.2. P2-Na2/3[Mn, Co, M]O2 -- 1.4.3. P2-Na2/3[Mn, Fe, M]O2 -- 1.4.4. P2-Na2/3[Ni, Mn, M]O2 -- 1.5. Summary and prospects
|
505 |
8 |
|
|a 1.6. Acknowledgments -- 1.7. References -- 2. Polyanionic-Type Compounds as Positive Electrodes for Na-ion batteries -- 2.1. Introduction -- 2.1.1. Oxides and polyanionic frameworks as positive electrodes for sodium ion-batteries -- 2.1.2. NASICONs and Na3V2(PO4)2F3 -- 2.2. NASICON structures as model frameworks in sodium-ion battery applications -- 2.2.1. Compositional diversity from solid electrolytes to electrodes -- 2.2.2. NASICON-typed materials as electrodes for Na batteries -- 2.2.3. Na3V2(PO4)3 (NVP) -- 2.3. Na3V2(PO4)2F3 used as a model framework in sodium-ion battery applications
|
505 |
8 |
|
|a 2.3.1. Structural description and compositional diversity -- 2.3.2. Na3V2(PO4)2F3: a promising active material for positive electrodes in NIBs -- 2.3.3. Oxygen substitution in Na3V2(PO4)2F3 and its effects on the electrochemical performance of substituted phases -- 2.3.4. Paving the way toward Na3V2(PO4)2F3 with superior performance -- 2.4. Conclusion and perspectives -- 2.5. References -- 3. Hard Carbon for Na-ion Batteries: From Synthesis to Performance and Storage Mechanism -- 3.1. Introduction -- 3.2. What is a hard carbon? -- 3.3. Hard carbon synthesis and microstructure
|
505 |
8 |
|
|a 3.3.1. Synthetic precursors-based hard carbon synthesis -- 3.3.2. Bio-polymers derived hard carbon synthesis -- 3.3.3. Biomass-based hard carbon synthesis -- 3.4. Hard carbon characteristics -- 3.4.1. Hard carbon structure -- 3.4.2. Hard carbon porosity -- 3.4.3. Hard carbon surface chemistry -- 3.4.4. Hard carbon structural defects -- 3.5. Electrochemical performance -- 3.5.1. Materials performance -- 3.5.2. Full Na-ion system performance -- 3.5.3. Sodium insertion mechanisms in hard carbon -- 3.6. Conclusion -- 3.7. References -- 4. Non-Carbonaceous Negative Electrodes in Sodium Batteries
|
500 |
|
|
|a 4.1. Introduction.
|
520 |
|
|
|a This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes - with the development of ionic liquid-based electrolytes - is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Sustainable Energy & Development
|
590 |
|
|
|a Knovel
|b ACADEMIC - Chemistry & Chemical Engineering
|
650 |
|
0 |
|a Sodium ion batteries.
|
650 |
|
7 |
|a Sodium ion batteries.
|2 fast
|0 (OCoLC)fst02008968
|
700 |
1 |
|
|a Monconduit, Laure.
|
700 |
1 |
|
|a Croguennec, Laurence.
|
776 |
0 |
8 |
|i Print version:
|a Monconduit, Laure.
|t Na-Ion Batteries.
|d Newark : John Wiley & Sons, Incorporated, ©2021
|z 9781789450132
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpNIB00008/toc
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6516147
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2878825
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301992092
|
994 |
|
|
|a 92
|b IZTAP
|