Cargando…

Advanced sparsity-driven models and methods for radar applications /

The book has 9 chapters. The following topics are dealt with: Introduction; Hybrid greedy pursuit algorithms for enhancing radar imaging quality; Two-level block sparsity model for multichannel radar signals; Parametric sparse representation for radar imaging with model uncertainty; Poisson disk sam...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Li, Gang (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : SciTech Publishing, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • About the author
  • Preface
  • Acknowledgments
  • Notation
  • 1. Introduction
  • 1.1 Sparsity of radar signals
  • 1.2 Fundamentals of sparse signal recovery
  • References
  • 2. Hybrid greedy pursuit algorithms for enhancing radar imaging quality
  • 2.1 Introduction
  • 2.2 Radar imaging with multiple measurement vectors
  • 2.3 Hybrid matching pursuit algorithm
  • 2.4 Look-ahead hybrid matching pursuit algorithm
  • 2.5 Conclusion
  • References
  • 3. Two-level block sparsity model for multichannel radar signals
  • 3.1 Introduction
  • 3.2 Formulation of the two-level block sparsity model
  • 3.3 TWRI based on two-level block sparsity
  • 3.4 STAP based on two-level block sparsity
  • 3.5 Conclusion
  • References
  • 4. Parametric sparse representation for radar imaging with model uncertainty
  • 4.1 Introduction
  • 4.2 Parametric dictionary
  • 4.3 Application to SAR refocusing of moving targets
  • 4.4 Application to SAR motion compensation
  • 4.5 Application to ISAR imaging of aircrafts
  • 4.6 Conclusion
  • References
  • 5. Poisson disk sampling for high-resolution and wide-swath SAR imaging
  • 5.1 Introduction
  • 5.2 Tradeoff between high-resolution and wide-swath in SAR imaging
  • 5.3 Poisson disk sampling scheme
  • 5.4 SAR imaging algorithm with Poisson disk sampled data
  • 5.5 Experimental results
  • 5.6 Conclusion
  • References
  • 6. When advanced sparse signal models meet coarsely quantized radar data
  • 6.1 Introduction
  • 6.2 Parametric quantized iterative hard thresholding for SAR refocusing of moving targets with coarsely quantized data
  • 6.3 Enhanced 1-bit radar imaging by exploiting two-level block sparsity
  • 6.4 Conclusion
  • References
  • 7. Sparsity aware micro-Doppler analysis for radar target classification
  • 7.1 Introduction
  • 7.2 Micro-Doppler parameter estimation via PSR
  • 7.3 Dynamic hand gesture recognition via Gabor-Hausdorff algorithm
  • 7.4 Conclusion
  • References
  • 8. Distributed detection of sparse signals in radar networks via locally most powerful test
  • 8.1 Introduction
  • 8.2 The original LMPT detector
  • 8.3 The quantized LMPT detector
  • 8.4 Conclusion
  • References
  • 9. Summary and perspectives
  • 9.1 Summary
  • 9.2 Perspectives
  • References
  • Index