|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_on1230149959 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
201223t20202021enka fob 001 0 eng d |
040 |
|
|
|a STF
|b eng
|e rda
|c STF
|d OCLCO
|d OCLCF
|d N$T
|d OCLCO
|d K6U
|d OCLCQ
|d UAB
|d UKAHL
|d CUV
|d EBLCP
|d CUS
|
019 |
|
|
|a 1227387070
|a 1228888484
|
020 |
|
|
|a 1839530766
|q (PDF)
|
020 |
|
|
|a 9781839530760
|q (PDF)
|
020 |
|
|
|z 9781839530753
|q (hardback)
|
020 |
|
|
|z 1839530758
|
024 |
|
7 |
|a 10.1049/SBRA535E
|2 doi
|
029 |
1 |
|
|a AU@
|b 000068861074
|
035 |
|
|
|a (OCoLC)1230149959
|z (OCoLC)1227387070
|z (OCoLC)1228888484
|
050 |
|
4 |
|a TK6575
|
072 |
|
7 |
|a B0100
|2 inspec
|
072 |
|
7 |
|a B0260
|2 inspec
|
072 |
|
7 |
|a B0290F
|2 inspec
|
072 |
|
7 |
|a B6135
|2 inspec
|
072 |
|
7 |
|a B6140
|2 inspec
|
072 |
|
7 |
|a B6310
|2 inspec
|
072 |
|
7 |
|a B6320
|2 inspec
|
082 |
0 |
4 |
|a 621.3848
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Li, Gang,
|e author.
|
245 |
1 |
0 |
|a Advanced sparsity-driven models and methods for radar applications /
|c Gang Li.
|
264 |
|
1 |
|a London, United Kingdom :
|b SciTech Publishing,
|c 2020.
|
264 |
|
4 |
|c ©2021
|
300 |
|
|
|a 1 online resource (viii, 254 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a The book has 9 chapters. The following topics are dealt with: Introduction; Hybrid greedy pursuit algorithms for enhancing radar imaging quality; Two-level block sparsity model for multichannel radar signals; Parametric sparse representation for radar imaging with model uncertainty; Poisson disk sampling for high-resolution and wide-swath SAR imaging; When advanced sparse signal models meet coarsely quantized radar data; Sparsity aware micro-Doppler analysis for radar target classification; Distributed detection of sparse signals in radar networks via locally most powerful test; and Summary and perspectives.
|
505 |
0 |
|
|a Intro -- Contents -- About the author -- Preface -- Acknowledgments -- Notation -- 1. Introduction -- 1.1 Sparsity of radar signals -- 1.2 Fundamentals of sparse signal recovery -- References -- 2. Hybrid greedy pursuit algorithms for enhancing radar imaging quality -- 2.1 Introduction -- 2.2 Radar imaging with multiple measurement vectors -- 2.3 Hybrid matching pursuit algorithm -- 2.4 Look-ahead hybrid matching pursuit algorithm -- 2.5 Conclusion -- References -- 3. Two-level block sparsity model for multichannel radar signals -- 3.1 Introduction
|
505 |
8 |
|
|a 3.2 Formulation of the two-level block sparsity model -- 3.3 TWRI based on two-level block sparsity -- 3.4 STAP based on two-level block sparsity -- 3.5 Conclusion -- References -- 4. Parametric sparse representation for radar imaging with model uncertainty -- 4.1 Introduction -- 4.2 Parametric dictionary -- 4.3 Application to SAR refocusing of moving targets -- 4.4 Application to SAR motion compensation -- 4.5 Application to ISAR imaging of aircrafts -- 4.6 Conclusion -- References -- 5. Poisson disk sampling for high-resolution and wide-swath SAR imaging -- 5.1 Introduction
|
505 |
8 |
|
|a 5.2 Tradeoff between high-resolution and wide-swath in SAR imaging -- 5.3 Poisson disk sampling scheme -- 5.4 SAR imaging algorithm with Poisson disk sampled data -- 5.5 Experimental results -- 5.6 Conclusion -- References -- 6. When advanced sparse signal models meet coarsely quantized radar data -- 6.1 Introduction -- 6.2 Parametric quantized iterative hard thresholding for SAR refocusing of moving targets with coarsely quantized data -- 6.3 Enhanced 1-bit radar imaging by exploiting two-level block sparsity -- 6.4 Conclusion -- References
|
505 |
8 |
|
|a 7. Sparsity aware micro-Doppler analysis for radar target classification -- 7.1 Introduction -- 7.2 Micro-Doppler parameter estimation via PSR -- 7.3 Dynamic hand gesture recognition via Gabor-Hausdorff algorithm -- 7.4 Conclusion -- References -- 8. Distributed detection of sparse signals in radar networks via locally most powerful test -- 8.1 Introduction -- 8.2 The original LMPT detector -- 8.3 The quantized LMPT detector -- 8.4 Conclusion -- References -- 9. Summary and perspectives -- 9.1 Summary -- 9.2 Perspectives -- References -- Index
|
590 |
|
|
|a Knovel
|b ACADEMIC - Aerospace & Radar Technology
|
650 |
|
0 |
|a Doppler radar.
|
650 |
|
0 |
|a Imaging.
|
650 |
|
0 |
|a Radar.
|
650 |
|
0 |
|a Signal processing.
|
650 |
|
0 |
|a Synthetic aperture radar.
|
650 |
|
0 |
|a Target acquisition.
|
650 |
|
0 |
|a Testing.
|
650 |
|
6 |
|a Radar Doppler.
|
650 |
|
6 |
|a Radar.
|
650 |
|
6 |
|a Traitement du signal.
|
650 |
|
6 |
|a Radar à synthèse d'ouverture.
|
650 |
|
6 |
|a Acquisition d'objectif.
|
650 |
|
6 |
|a Essais (Technologie)
|
650 |
|
7 |
|a radar.
|2 aat
|
650 |
|
7 |
|a testing.
|2 aat
|
650 |
|
7 |
|a Doppler radar
|2 fast
|
650 |
|
7 |
|a Radar
|2 fast
|
650 |
|
7 |
|a Signal processing
|2 fast
|
650 |
|
7 |
|a Synthetic aperture radar
|2 fast
|
650 |
|
7 |
|a Target acquisition
|2 fast
|
650 |
|
7 |
|a Testing
|2 fast
|
650 |
|
7 |
|a compressed sensing.
|2 inspect
|
650 |
|
7 |
|a Doppler radar.
|2 inspect
|
650 |
|
7 |
|a greedy algorithms.
|2 inspect
|
650 |
|
7 |
|a image classification.
|2 inspect
|
650 |
|
7 |
|a image coding.
|2 inspect
|
650 |
|
7 |
|a image enhancement.
|2 inspect
|
650 |
|
7 |
|a image representation.
|2 inspect
|
650 |
|
7 |
|a image resolution.
|2 inspect
|
650 |
|
7 |
|a image sampling.
|2 inspect
|
650 |
|
7 |
|a iterative methods.
|2 inspect
|
650 |
|
7 |
|a radar detection.
|2 inspect
|
650 |
|
7 |
|a radar imaging.
|2 inspect
|
650 |
|
7 |
|a radar resolution.
|2 inspect
|
650 |
|
7 |
|a radar target recognition.
|2 inspect
|
650 |
|
7 |
|a synthetic aperture radar.
|2 inspect
|
650 |
|
7 |
|a testing.
|2 inspect
|
653 |
|
|
|a locally most powerful test
|
653 |
|
|
|a radar networks
|
653 |
|
|
|a sparse signals distributed detection
|
653 |
|
|
|a radar target classification
|
653 |
|
|
|a sparsity aware microDoppler analysis
|
653 |
|
|
|a coarsely quantized radar data
|
653 |
|
|
|a advanced sparse signal models
|
653 |
|
|
|a wide-swath SAR imaging
|
653 |
|
|
|a high-resolution SAR imaging
|
653 |
|
|
|a Poisson disk sampling
|
653 |
|
|
|a model uncertainty
|
653 |
|
|
|a parametric sparse representation
|
653 |
|
|
|a multichannel radar signals
|
653 |
|
|
|a two-level block sparsity model
|
653 |
|
|
|a radar imaging quality enhancement
|
653 |
|
|
|a hybrid greedy pursuit algorithms
|
653 |
|
|
|a radar applications
|
653 |
|
|
|a advanced sparsity-driven models
|
776 |
0 |
8 |
|i Print version
|a Li, Gang
|t Advanced sparsity-driven models and methods for radar applications
|d Edison : SciTech Publishing, 2021
|z 9781839530753
|w (OCoLC)1230929196
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpASDMMRA6/toc
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2706958
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37504103
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6426644
|
994 |
|
|
|a 92
|b IZTAP
|