Cargando…

Smart Antennas and Electromagnetic Signal Processing for Advanced Wireless Technology : With Artificial Intelligence Applications and Coding /

The book addresses the current demand for a scientific approach to advanced wireless technology and its future developments. It gives a clear presentation of both antennas and adaptive signal processing which is what makes antennas powerful, maneuverable and necessary for advanced wireless technolog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hoole, Paul R. P.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Gistrup, Denmark : River Publishers, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction
  • 1.1 Elementary Principle
  • 1.2 Broadcast Frequency Bands
  • 1.3 Basic Characteristics and Definitions of Terms
  • 1.4 Basic Antenna Parameters
  • 1.4.1 Antenna as a Spatial Filter: Radiation Pattern
  • 1.4.2 Antenna Gain and Beamwidth
  • 1.4.3 Effective Aperture
  • 1.4.4 Operation Zones
  • 1.4.5 Antenna as a Temporal Filter: Bandwidth
  • 1.4.6 Antenna Temperature
  • 1.4.7 Antenna Input Impedance
  • 1.5 Reciprocity
  • 1.5.1 The Friis Transmission Equation
  • 1.5.2 The Radar Equation
  • 1.6 Types of Antennas
  • 1.6.1 Elemental Current Antennas
  • 1.6.2 Traveling Wave Antennas
  • 1.6.3 Array Antennas
  • 1.6.4 Aperture Antennas
  • 1.7 Waves along Conductors and in Free Space
  • 1.8 Maxwell's Equations and Electromagnetic Waves
  • 1.8.1 Introduction
  • 1.8.2 Electromagnetic Waves
  • 1.8.3 Energy in the Electromagnetic Field
  • 1.9 Points to Note When Purchasing or Designing Antennas
  • 1.10 Smart Antennas and Electromagnetic Signal Processing
  • 2. Elementary Antenna Theory
  • 2.1 Introduction
  • 2.1.1 Maxwell's Equations
  • 2.1.2 The Magnetic Vector Potential A for an Electric Current Source J
  • 2.2 Infinitesimal Wire Antennas (Hertzian Dipole L < ⋋/50): The Elemental Dipole
  • 2.2.1 Electromagnetic Fields Radiated by a Hertzian Dipole
  • 2.2.2 Electric Field Radiation Pattern of an Electric Dipole
  • 2.3 Antenna in Motion
  • 2.4 Finite Length Wire Antenna (Dipole): The Half-Wave (⋋/2) Dipole
  • 2.4.1 Radiation from an Electric Dipole Antenna of Any Length L
  • 2.4.2 Radiation from a Half-Wave Electric Dipole Antenna: L = ⋋/2
  • 2.5 Radiation Resistance
  • 2.6 Impedance Matching
  • 2.7 Radiation Safety
  • 2.8 The Effect of Antenna Height and Ground Reflection
  • 2.9 Inverse Doppler Effect in the Near-Field Region 71
  • 2.10 The Magnetic Dipole: Loop Antenna 73
  • 2.10.1 Magnetic Field Pattern of a Magnetic Dipole 74
  • 2.10.2 The Helical Broadband Antenna 74
  • 2.11 Effect of Ground on Antenna Radiated Electric Fields 77
  • 2.11.1 The Vertical Dipole 78
  • 2.11.2 The Horizontal Dipole 80
  • 2.12 Frequency Independent Antennas 81
  • 3 Focused Beam Antennas 85 P.R.P. Hoole 3.1 Introduction 85
  • 3.2 Array Antennas: Two-Element Linear Array 87
  • 3.2.1 Two-Element Hertzian Dipole Array Antenna 87
  • 3.2.2 Two-Element Half-Wave Dipole Array Antenna 92
  • 3.3 General N-Element Uniform Linear Array 95
  • 3.4 Mutual Coupling Between Elements of The Array Antenna 102
  • 3.5 Polarization 103
  • 3.6 Aperture Antennas 105
  • 3.7 Patch Microstrip Antennas 112
  • 3.8 Corner-Reflector Antenna 116
  • 3.9 Finite Length Antenna: A Basic Building Block for Antenna Simulation 117
  • 4 Antenna Beamforming: Basics 121 P.R.P. Hoole 4.1 Introduction 121
  • 4.2 Antenna Synthesis 122
  • 4.2.1 Line Source 123
  • 4.2.2 Fourier Transform Method 124
  • 4.2.2.1 Line Source 124
  • 4.2.2.2 Linear Array 127
  • 4.2.3 Woodward-Lawson Sampling Method 131
  • 4.2.3.1 Line Source 132
  • 4.2.3.2 Linear Array 134
  • 4.3 Adaptive Arrays 135
  • 4.3.1 LMS Adaptive Array 136
  • 4.3.2 Two-Element Array 137
  • 4.3.3 The LMS Weights 139
  • 4.3.4 Complex Signal Notation 144.
  • 5 A New Smart Antenna for 5/6GWireless Systems: Narrow 360À Steerable Beam With No Reflectors 147 K. Pirapaharan, P.R.P Hoole, H. Kunsei, K.S. Senthilkumar, and S.R.H. Hoole 5.1 Introduction 147
  • 5.2 A Narrow Steerable Single-Beam Smart Antenna without a Reflector 150
  • 5.3 Adaptive Array Model and Analytical Beamforming 156
  • 5.4 Conclusions 163
  • 5.5 Appendix 5.1. The MATLABTM code 165
  • 6 Synthetic Aperture Antennas and Imaging 167 Tan Pek Hua, Dennis Goh, P.R.P. Hoole, and U.R. Abeyratne 6.1 Basic Principles of Radar Signal Processing 167
  • 6.1.1 Introduction 167
  • 6.1.2 Synthetic Aperture Radar 169
  • 6.2 Inverse Synthetic Aperture Radar 170
  • 6.3 One-Dimensional Imaging with Point Scattering 170
  • 6.3.1 Overview 170
  • 6.3.2 Range Resolution 175
  • 6.3.3 Effect of Pulse Width Variation 177
  • 6.3.4 Effect of a Chirp Rate Variation 179
  • 6.3.5 Effect of Sampling Frequency Variation 180
  • 6.4 Two-Dimensional Imaging with Point Scattering 181
  • 6.4.1 Overview 182
  • 6.4.2 Procedures for Two-Dimensional Imaging 182
  • 6.4.2.1 Data Collection 182
  • 6.4.2.2 Concept for Two-Dimensional Imaging 185
  • 6.4.2.3 Development and Implementation 187
  • 6.4.3 Simulation Results 190
  • 7 Smart Antennas: Mobile Station Antenna Location 195 Stetson Oh Kok Leong, Ng Kim Chong, P.R.P. Hoole, and E. Gunawan 7.1 Mobile Radio Environment 195
  • 7.1.1 Fading 196
  • 7.1.2 Doppler Spread 198
  • 7.1.3 Delay Station Spread 199
  • 7.2 Mobile Station Positioning 199
  • 7.2.1 Global Positioning Satellite 200
  • 7.2.2 MS Positioning in the Cellular Network 201
  • 7.2.2.1 BS-Based Positioning 201
  • 7.2.2.2 MS-Based Positioning 203
  • 7.3 Position and Velocity Estimation in Cellular Systems 204
  • 7.3.1 Antenna Signal Model 204
  • 7.3.2 Position and Velocity Estimation Algorithm 206
  • 7.3.3 Simulation Scenario 208
  • 7.3.4 Channel Models 209
  • 7.3.4.1 Additive White Gaussian 209
  • 7.3.4.2 Rayleigh Fading 210
  • 7.3.4.3 Dominant Reflected Path 210
  • 7.3.4.4 Rician Fading 210.
  • 7.3.5 Antenna Radiation Pattern 211
  • 7.3.6 Initial Values 211
  • 7.3.7 E-Field Strength Measurement 212
  • 7.3.8 Simulation Results 213
  • 7.3.9 Error Handlers 213
  • 8 Smart Antennas: Mobile Station (MS) and Base Station (BS) Antenna Beamforming 217 Ng Kim Chong, Stetson Oh Kok Leong, P.R.P. Hoole, and E. Gunawan 8.1 Array Antenna 218
  • 8.2 Adaptive Algorithm 221
  • 8.2.1 Minimum Mean Square Error Criteria 222
  • 8.2.2 Least Mean Square Algorithm 223
  • 8.3 Electromagnetic Model 225
  • 8.4 Tracking and Beamforming with Position and Velocity Estimator (BFPVE) 226
  • 8.5 Simulation Scenario 228
  • 8.6 Channel Models 229
  • 8.7 Antenna Radiation Pattern 230
  • 8.8 Initial Values 231
  • 8.9 Simulation Results 231
  • 8.10 Handover Algorithm in Smart Antenna Systems: The Triangle Method 235
  • 8.11 Base Station Beamforming: Position-Velocity Estimator 238
  • 8.12 Channel Model 241
  • 8.13 Performance Evaluation 244
  • 8.13.1 System Capacity 244
  • 8.13.2 Loading of Antenna 249
  • 8.13.3 Signal to Interference and Noise Ratio 249
  • 8.13.4 Range 249
  • 8.14 Base Station Beamforming: Simulation Studies 250
  • 8.14.1 Simulation Scenario 250
  • 8.14.2 Algorithm 251
  • 8.15 Results and Discussion 253
  • 8.15.1 BS Smart Antenna Beams 253
  • 8.15.2 Triangle Method 254
  • 8.15.3 Handover 254
  • 8.15.4 BS-Based Position-Velocity Estimator 255
  • 8.15.5 AWGN Model for Smart Antenna Systems 256
  • 8.15.6 Performance Evaluation 259
  • 8.15.6.1 Capacity, SIR, and Range 259
  • 8.15.6.2 Loading of Antenna 260
  • 9 Real- and Complex-Valued Artificial Intelligence Weight Optimization Algorithms for Smart Antennas in 5/6GWireless Systems: Linear and Nonlinear Arrays 263 K.S. Senthilkumar, K. Pirapaharan, H. Kunsei, S.R.H. Hoole, and P.R.P Hoole 9.1 Introduction 264
  • 9.2 Processing Element 266
  • 9.2.1 Single-Layer Perceptron 266
  • 9.2.2 Multi-Layer Perceptron 269
  • 9.3 Adaptive Array Model 270
  • 9.4 Single Neuron Weight Optimization Model 274
  • 9.4.1 Real-Valued Neural Network 277.
  • 9.4.2 Complex-Valued Neural Network 282
  • 9.4.3 Complex-Valued Activation Functions 286
  • 9.4.3.1 Hyperbolic Tangent Function 286
  • 9.4.3.2 Bipolar Sigmoid Function 287
  • 9.4.3.3 Squash or Elliot Function 287
  • 9.5 MATLABTM Program 293
  • 9.5.1 MATLABTM Program of the SNWOM Algorithm 295
  • 9.5.2 MATLAB Program for the Plotting the Radiation Pattern 298.
  • 10 Advanced Wireless Systems: A Comprehensive Survey 303 K. Pirapaharan, P.R.P. Hoole, and S.R.H. Hoole
  • 10.1 Introduction 303
  • 10.2 Evolution of the Wireless Technology 305
  • 10.2.1 The Zero Generation 305
  • 10.2.2 The First Generation 305
  • 10.2.3 The Second Generation 306
  • 10.2.4 The Third Generation 307
  • 10.2.5 The Fourth Generation 308
  • 10.2.6 The Fifth Generation 309
  • 10.3
  • 5G Architecture 311
  • 10.3.1 Radio Network Evolution 312
  • 10.3.2 Advanced Air Interface 313
  • 10.3.3 Next Generation Smart Antennas 313
  • 10.3.4 Heterogeneous Approach-HetNets 313
  • 10.4 Physical Layer Design Issues 314
  • 10.4.1 mm-Wave Wireless Channel Model 314
  • 10.4.2 Adaptive Beamforming 315
  • 10.4.3 Massive MIMO Systems 317
  • 10.5 MAC Layer Upgrading Requirements 319
  • 10.5.1 MAC Layer Restoration to Meet the Modifications in Physical Layer 319
  • 10.5.2 Spatial Beam Patterns 319
  • 10.5.3 Directional MAC Protocols 320
  • 10.5.4 Multiple Access Techniques for 5G 320
  • 10.5.5 Other Methods 321
  • 10.6 MIMO 322
  • 10.6.1 Benefits of MIMO Technology 325
  • 10.6.2 Superior Data Rates, Range, and Reliability 326
  • 10.6.3 Other Methods Downlink MIMO 326
  • 10.6.4 Spatial Multiplexing 326
  • 10.6.5 Transmit Diversity 328
  • 10.6.6 Uplink MIMO 328
  • 10.7 Impact of 5G Wireless Systems on Human Health 328
  • 10.8 Next Generation Wireless Systems 329
  • 11 Emerging Technologies for 5G/6G Wireless Communication Networks 337 Ade Syaheda Wani Marzuki, Dayang Azra Awang Mat, Dayang Nurkhairunnisa Abang Zaidel, Kho Lee Chin, and Paul RP Hoole 11.1 Introduction 337
  • 11.2
  • 5G Requirements 339
  • 11.3
  • 5G Cloud-Based Network Architecture 340
  • 11.4 Key Technologies 341
  • 11.4.1 Small Cell Densification 342
  • 11.4.2 Millimeter Wave 344
  • 11.4.3 Massive MIMO 345
  • 11.4.4 Beamforming Mechanism 348
  • 11.4.5 Ubiquitous Communications 349
  • 11.4.6 Green Communications 351
  • 11.5 Conclusion 352
  • 12
  • 5/6G, Smart Antennas and Coding the Algorithms: Linear ANN, Non-linear ANN, and LMS 361 H.M.C.J. Herath, H.M.G.G.J.G. Herath, K.M.U.I. Ranaweera, D.N. Uduwawala, and P.R.P. Hoole 12.1 Introduction 362.
  • 12.1.1 Evolution of Mobile Communication System 362
  • 12.1.2
  • 5G Technologies 363
  • 12.1.3
  • 5/6G, Health, and Environment 364
  • 12.1.4 Future 6G (2030) Wireless System 365
  • 12.1.5 Development of the Antenna System 367
  • 12.1.6 The Goals of the Smart Antenna System 369
  • 12.1.7 Beamforming 370
  • 12.1.7.1 Fixed Weight Beamformer 370
  • 12.1.7.2 Adaptive Beamformer 370
  • 12.2 Smart antenna using ANN 371
  • 12.2.1 Adaptive Array Model 372
  • 12.2.2 Single Perceptron Weight Optimization 372
  • 12.2.3 Activation Functions 372
  • 12.3 Smart Antenna CODES: Linear/Non-linear ANN AND LMS 374
  • 12.3.1 The ANN Codes: Linear and Non-Linear ANN 374
  • 12.3.2 The Least Mean Square Code 377
  • 12.4 Results and discussion 379
  • 12.4.1 Linear Array Smart Antenna 379
  • 12.5 Non-Linear Array Results 381
  • 12.5.1 Non-Linear Array Smart Antenna 381
  • Bibliography 385
  • Index 405
  • About the Author 411.