Cargando…

Deep neural network design for radar applications

Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scienti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Gurbuz, Sevgi Zubeyde (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London SciTech Publishing, an imprint of The Institution of Engineering and Technology 2020
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007c 4500
001 KNOVEL_on1228888932
003 OCoLC
005 20231027140348.0
006 m o d
007 cr cn|||||||||
008 201221t20202021enka ob 000 0 eng d
040 |a UKAHL  |b eng  |e rda  |e pn  |c UKAHL  |d CUV  |d CUS  |d OCLCF  |d OCLCO  |d ESU  |d STF  |d UAB 
019 |a 1233057752 
020 |a 9781785618536  |q electronic bk. 
020 |a 1785618539  |q electronic bk. 
020 |z 9781785618529 
020 |z 1785618520 
024 7 |a 10.1049/SBRA529E  |2 doi 
035 |a (OCoLC)1228888932  |z (OCoLC)1233057752 
050 4 |a TK6575 
072 7 |a B0100  |2 inspec 
072 7 |a B6135  |2 inspec 
072 7 |a B6140  |2 inspec 
072 7 |a B6300  |2 inspec 
072 7 |a B7710  |2 inspec 
072 7 |a C0000  |2 inspec 
072 7 |a C5260A  |2 inspec 
072 7 |a C5290  |2 inspec 
072 7 |a C6170K  |2 inspec 
072 7 |a C7410  |2 inspec 
082 0 4 |a 621.3848  |q OCoLC  |2 23/eng/20230216 
049 |a UAMI 
245 0 0 |a Deep neural network design for radar applications  |c edited by Sevgi Zubeyde Gurbuz 
264 1 |a London  |b SciTech Publishing, an imprint of The Institution of Engineering and Technology  |c 2020 
264 4 |c ©2021 
300 |a 1 online resource  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 |a Description based on online resource; title from PDF title page (IET Digital Library , viewed on March 17, 2021) 
504 |a Includes bibliographical references and index 
505 0 |a Prologue : perspectives on deep learning of RF data / Sevgi Zubeyde Gurbuz and Eric S. Mason -- Radar systems, signals, and phenomenology / Sevgi Zubeyde Gurbuz, Shunqiao Sun, and David Tahmoush -- Basic principles of machine learning / Ali Cafer Gurbuz and Fauzia Ahmad -- Theoretical foundations of deep learning / Stefan Brüggenwirth and Simon Wagner -- Radar data representation for classification of activities of daily living / Baris Erol and Moeness G. Amin -- Challenges in training DNNs for classification of radar micro-Doppler signatures / Sevgi Z. Gurbuz, Moeness G. Amin, Mehmet S. Seyfioğlu, and Baris Erol -- Machine learning techniques for SAR data augmentation / Benjamin Lewis, Theresa Scarnati, Michael Levy, John Nehrbass, Edmund Zelnio, and Elizabeth Sudkamp -- Classifying micro-Doppler signatures using deep convolutional neural networks / Youngwook Kim -- Deep neural network design for SAR/ISAR-based automatic target recognition / Simon Wagner and Stefan Brüggenwirth -- Deep learning for passive synthetic aperture radar imaging / Samia Kazemi, Eric Mason, Bariscan Yonel, and Birsen Yazici --Fusion of deep representations in multistatic radar networks / Jarez Satish Patel, Francesco Fioranelli, Matthew Ritchie and Hugh Griffiths -- Application of deep learning to radar remote sensing / John Rogers, Lucas Cagle, John E. Ball, Mehmet Kurum and Sevgi Z. Gurbuz -- Epilogue : looking toward the future / Sevgi Zubeyde Gurbuz. 
520 |a Novel deep learning approaches are achieving state-of-the-art accuracy in the area of radar target recognition, enabling applications beyond the scope of human-level performance. This book provides an introduction to the unique aspects of machine learning for radar signal processing that any scientist or engineer seeking to apply these technologies ought to be aware of. The book begins with three introductory chapters on radar systems and phenomenology, machine learning principles, and optimization for training common deep neural network (DNN) architectures. Subsequently, the book summarizes radar-specific issues relating to the different domain representations in which radar data may be presented to DNNs and synthetic data generation for training dataset augmentation. Further chapters focus on specific radar applications, which relate to DNN design for micro-Doppler analysis, SAR-based automatic target recognition, radar remote sensing, and emerging fields, such as data fusion and image reconstruction. Edited by an acknowledged expert, and with contributions from an international team of authors, this book provides a solid introduction to the fundamentals of radar and machine learning, and then goes on to explore a range of technologies, applications and challenges in this developing field. This book is also a valuable resource for both radar engineers seeking to learn more about deep learning, as well as computer scientists who are seeking to explore novel applications of machine learning. In an era where the applications of RF sensing are multiplying by the day, this book serves as an easily accessible primer on the nuances of deep learning for radar applications. 
590 |a Knovel  |b ACADEMIC - Aerospace & Radar Technology 
590 |a Knovel  |b ACADEMIC - Software Engineering 
650 0 |a Radar. 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 0 |a Remote sensing. 
650 0 |a Doppler radar. 
650 2 |a Radar 
650 2 |a Neural Networks, Computer 
650 2 |a Remote Sensing Technology 
650 6 |a Radar. 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 6 |a Télédétection. 
650 6 |a Radar Doppler. 
650 7 |a radar.  |2 aat 
650 7 |a Doppler radar  |2 fast  |0 (OCoLC)fst00896950 
650 7 |a Machine learning  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Radar  |2 fast  |0 (OCoLC)fst01086712 
650 7 |a Remote sensing  |2 fast  |0 (OCoLC)fst01094469 
650 7 |a classification.  |2 inspect 
650 7 |a convolutional neural nets.  |2 inspect 
650 7 |a data structures.  |2 inspect 
650 7 |a Doppler radar.  |2 inspect 
650 7 |a learning (artificial intelligence).  |2 inspect 
650 7 |a passive radar.  |2 inspect 
650 7 |a radar applications.  |2 inspect 
650 7 |a radar computing.  |2 inspect 
650 7 |a radar imaging.  |2 inspect 
650 7 |a radar target recognition.  |2 inspect 
650 7 |a remote sensing by radar.  |2 inspect 
650 7 |a sensor fusion.  |2 inspect 
650 7 |a synthetic aperture radar.  |2 inspect 
653 |a deep neural network design 
653 |a radar applications 
653 |a deep learning 
653 |a RF data 
653 |a radar systems 
653 |a radar signals 
653 |a radar phenomenology 
653 |a machine learning 
653 |a theoretical foundations 
653 |a radar data representation 
653 |a daily living activities classification 
653 |a DNN training 
653 |a radar microDoppler signatures classification 
653 |a SAR data augmentation 
653 |a deep convolutional neural networks 
653 |a SAR-based automatic target recognition 
653 |a ISAR-based automatic target recognition 
653 |a passive synthetic aperture radar imaging 
653 |a deep representations fusion 
653 |a multistatic radar networks 
653 |a radar remote sensing 
700 1 |a Gurbuz, Sevgi Zubeyde  |e editor 
856 4 0 |u https://appknovel.uam.elogim.com/kn/resources/kpDNNDRA0A/toc  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37507071 
994 |a 92  |b IZTAP