Practical machine learning with AWS : process, build, deploy, and productionize your models using AWS /
Successfully build, tune, deploy, and productionize any machine learning model, and know how to automate the process from data processing to deployment. This book is divided into three parts. Part I introduces basic cloud concepts and terminologies related to AWS services such as S3, EC2, Identity A...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Berkeley, CA] :
Apress,
[2021]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Part I: Introduction to Amazon Web Services
- Chapter 1: Cloud Computing and AWS
- Chapter 2: AWS Pricing and Cost Management
- Chapter 3: Security in Amazon Web Services
- Part II: Machine Learning in AWS
- Chapter 4: Introduction to Machine Learning
- Chapter 5: Data Processing in AWS
- Chapter 6: Building and Deploying Models in SageMaker
- Chapter 7: Using CloudWatch in SageMaker
- Chapter 8: Running a Custom Algorithm in SageMaker
- Chapter 9: Making an End-to-End Pipeline in SageMaker
- Part III: Other AWS Services
- Chapter 10: Machine Learning Use Cases in AWS
- Appendix A: Creating a Root User Account to Access Amazon Management Console
- Appendix B: Creating an IAM Role
- Appendix C: .Creating an IAM User- Appendix D: Creating an S3 Bucket
- Appendix E: Creating a SageMaker Notebook Instance.-