A First Course in Control System Design.
This book discusses control systems design from a model-basedperspective for dynamic system models of single-input single-output type. Theemphasis in this book is on understanding and applying the techniques thatenable the design of effective control systems in multiple engineeringdisciplines. The b...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Aalborg :
River Publishers,
2020.
|
Edición: | 2nd ed. |
Colección: | River Publishers series in automation, control and robotics.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Foreword xi
- Preface xiii
- Acknowledgement xxi
- List of Figures xxiii
- List of Tables xxix
- List of Abbreviations xxxi
- 1 Mathematical Models of Physical Systems 1
- 1.1 Modeling of Physical Systems 2
- 1.1.1 Model Variables and Element Types 3
- 1.1.2 First-Order ODE Models 4
- 1.1.3 Solving First-Order ODE Models with Step Input 8
- 1.1.4 Second-Order ODE Models 10
- 1.1.5 Solving Second-Order ODE Models 12
- 1.2 Transfer Function Models 15
- 1.2.1 DC Motor Model 16
- 1.2.2 Industrial Process Models 20
- 1.3 State Variable Models 21
- 1.4 Linearization of Nonlinear Models 24
- 1.4.1 Linearization About an Operating Point 25
- 1.4.2 Linearization of a General Nonlinear Model 27 Skill Assessment Questions 29
- 2 Analysis of Transfer Function Models 31
- 2.1 Characterization of Transfer Function Models 32
- 2.1.1 System Poles and Zeros 32
- 2.1.2 System Natural Response 34
- 2.2 System Response to Inputs 36
- 2.2.1 The Impulse Response 36
- 2.2.2 The Step Response 38
- 2.2.3 Characterizing the System Transient Response 44
- 2.2.4 System Stability 46
- 2.3 Sinusoidal Response of a System 49
- 2.3.1 Sinusoidal Response of Low-Order Systems 50
- 2.3.2 Visualizing the Frequency Response 52 Skill Assessment Questions 59
- 3 Analysis of State Variable Models 63
- 3.1 State Variable Models 64
- 3.1.1 Solution to the State Equations 65
- 3.1.2 Laplace Transform Solution and Transfer Function 66
- 3.1.3 The State-Transition Matrix 68
- 3.1.4 Homogenous State Equation and Asymptotic Stability 70
- 3.1.5 System Response for State Variable Models 74
- 3.2 State Variable Realization of Transfer Function Models 77
- 3.2.1 Simulation Diagrams 78
- 3.2.2 Controller Form Realization 80
- 3.2.3 Dual (Observer Form) Realization 83
- 3.2.4 Modal Realization 83
- 3.2.5 Diagonalization and Decoupling 85
- 3.3 Linear Transformation of State Variables 86
- 3.3.1 Transformation into Controller Form 86
- 3.3.2 Transformation into Modal Form 88 Skill Assessment Questions 90.
- 4 Feedback Control Systems 93
- 4.1 Static Gain Controller 95
- 4.2 Dynamic Controllers 96
- 4.2.1 First-Order Phase-Lead and Phase-Lag Controllers 97
- 4.2.2 The PID Controller 99
- 4.2.3 Rate Feedback Controllers 103 Skill Assessment Questions 108
- 5 Control System Design Objectives 111
- 5.1 Stability of the Closed-Loop System 112
- 5.1.1 Closed-Loop Characteristic Polynomial 112
- 5.1.2 Stability Determination by Algebraic Methods 114
- 5.1.3 Stability Determination from the Bode Plot 116
- 5.2 Transient Response Improvement 117
- 5.2.1 System Design Specifications 119
- 5.2.2 The Desired Characteristic Polynomial 121
- 5.2.3 Optimal Performance Indices 123
- 5.3 Steady-State Error Improvement 124
- 5.3.1 The Steady-State Error 124
- 5.3.2 System Error Constants 125
- 5.3.3 Steady-State Error to Ramp Input 126
- 5.4 Disturbance Rejection 128
- 5.5 Sensitivity and Robustness 130 Skill Assessment Questions 132
- 6 Control System Design with Root Locus 133
- 6.1 The Root Locus 135
- 6.1.1 Roots of the Characteristic Polynomial 135
- 6.1.2 Root Locus Rules 136
- 6.1.3 Obtaining Root Locus Plot in MATLAB 138
- 6.1.4 Stability from the Root Locus Plot 139
- 6.1.5 Analytic Root Locus Conditions 141
- 6.2 Static Controller Design 143
- 6.3 Dynamic Controller Design 144
- 6.3.1 Transient Response Improvement 145
- 6.3.2 Steady-State Error Improvement 151
- 6.3.3 Lead-Lag and PID Designs 152
- 6.3.4 Rate Feedback Compensation 156
- 6.3.5 Controller Designs Compared 161
- 6.4 Controller Realization 163
- 6.4.1 Phase-Lead/Phase-Lag Controllers 164
- 6.4.2 PD, PI, PID Controllers 164 Skill Assessment Questions 165
- 7 Design of Sampled-Data Systems 167
- 7.1 Models of Sampled-Data Systems 169
- 7.1.1 Z-transform 169
- 7.1.2 Zero-Order Hold 171
- 7.1.3 Pulse Transfer Function 172
- 7.2 Sampled-Data System Response 175
- 7.2.1 Difference Equation Solution by Iteration 175
- 7.2.2 Unit-Pulse Response 176
- 7.2.3 Unit-Step Response 179.
- 7.2.4 Response to Arbitrary Inputs 183
- 7.3 Stability in the Case of Sampled-Data Systems 184
- 7.3.1 Jury's Stability Test 184
- 7.3.2 Stability Through Bilinear Transform 185
- 7.4 Closed-Loop Sampled-Data Systems 186
- 7.4.1 Closed-Loop System Stability 186
- 7.4.2 Unit-Step Response 187
- 7.4.3 Steady-State Tracking Error 190
- 7.5 Controllers for Sampled-Data Systems 192
- 7.5.1 Root Locus Design of Digital Controllers 193
- 7.5.2 Analog and Digital Controller Design Compared 196
- 7.5.3 Digital Controller Design by Emulation 200
- 7.5.4 Emulation of Analog PID Controller 203 Skill Assessment Questions 206
- 8 Controller Design for State Variable Models 211
- 8.1 State Feedback Controller Design 212
- 8.1.1 Pole Placement with State Feedback 213
- 8.1.2 Pole Placement in the Controller Form 215
- 8.1.3 Pole Placement using Bass-Gura Formula 217
- 8.1.4 Pole Placement using Ackermann's Formula 218
- 8.1.5 Pole Placement using Sylvester's Equation 220
- 8.2 Tracking System Design 222
- 8.2.1 Tracking System Design with Feedforward Gain 222
- 8.2.2 Tracking PI Controller Design 225
- 8.3 State Variable Models of Sampled-Data Systems 230
- 8.3.1 Discretizing the State Equations 230
- 8.3.2 Solution to the Discrete State Equations 232
- 8.3.3 Pulse Transfer Function from State Equations 234
- 8.4 Controllers for Discrete State Variable Models 235
- 8.4.1 Emulating an Analog Controller 235
- 8.4.2 Pole Placement Design of Digital Controller 236
- 8.4.3 Deadbeat Controller Design 238
- 8.4.4 Tracking PI Controller Design 241 Skill Assessment Questions 244
- 9 Frequency Response Design of Compensators 247
- 9.1 Frequency Response Representation 248
- 9.1.1 The Bode Plot 248
- 9.1.2 The Nyquist Plot 250
- 9.2 Measures of Performance 254
- 9.2.1 Relative Stability 254
- 9.2.2 Phase Margin and the Transient Response 256
- 9.2.3 Error Constants and System Type 259
- 9.2.4 System Sensitivity 260
- 9.3 Frequency Response Design 261.
- 9.3.1 Gain Compensation 261
- 9.3.2 Phase-Lag Compensation 262
- 9.3.3 Phase-Lead Compensation 264
- 9.3.4 Lead-Lag Compensation 267
- 9.3.5 PI Compensator 269
- 9.3.6 PD Compensator 271
- 9.3.7 PID Compensator 273
- 9.3.8 Compensator Designs Compared 275
- 9.4 Closed-Loop Frequency Response 276 Skill Assessment Questions 280 Appendix 281
- Index 285
- About the Author 289.