Cargando…

A First Course in Control System Design.

This book discusses control systems design from a model-basedperspective for dynamic system models of single-input single-output type. Theemphasis in this book is on understanding and applying the techniques thatenable the design of effective control systems in multiple engineeringdisciplines. The b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Iqbal, Kamran
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, 2020.
Edición:2nd ed.
Colección:River Publishers series in automation, control and robotics.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Foreword xi
  • Preface xiii
  • Acknowledgement xxi
  • List of Figures xxiii
  • List of Tables xxix
  • List of Abbreviations xxxi
  • 1 Mathematical Models of Physical Systems 1
  • 1.1 Modeling of Physical Systems 2
  • 1.1.1 Model Variables and Element Types 3
  • 1.1.2 First-Order ODE Models 4
  • 1.1.3 Solving First-Order ODE Models with Step Input 8
  • 1.1.4 Second-Order ODE Models 10
  • 1.1.5 Solving Second-Order ODE Models 12
  • 1.2 Transfer Function Models 15
  • 1.2.1 DC Motor Model 16
  • 1.2.2 Industrial Process Models 20
  • 1.3 State Variable Models 21
  • 1.4 Linearization of Nonlinear Models 24
  • 1.4.1 Linearization About an Operating Point 25
  • 1.4.2 Linearization of a General Nonlinear Model 27 Skill Assessment Questions 29
  • 2 Analysis of Transfer Function Models 31
  • 2.1 Characterization of Transfer Function Models 32
  • 2.1.1 System Poles and Zeros 32
  • 2.1.2 System Natural Response 34
  • 2.2 System Response to Inputs 36
  • 2.2.1 The Impulse Response 36
  • 2.2.2 The Step Response 38
  • 2.2.3 Characterizing the System Transient Response 44
  • 2.2.4 System Stability 46
  • 2.3 Sinusoidal Response of a System 49
  • 2.3.1 Sinusoidal Response of Low-Order Systems 50
  • 2.3.2 Visualizing the Frequency Response 52 Skill Assessment Questions 59
  • 3 Analysis of State Variable Models 63
  • 3.1 State Variable Models 64
  • 3.1.1 Solution to the State Equations 65
  • 3.1.2 Laplace Transform Solution and Transfer Function 66
  • 3.1.3 The State-Transition Matrix 68
  • 3.1.4 Homogenous State Equation and Asymptotic Stability 70
  • 3.1.5 System Response for State Variable Models 74
  • 3.2 State Variable Realization of Transfer Function Models 77
  • 3.2.1 Simulation Diagrams 78
  • 3.2.2 Controller Form Realization 80
  • 3.2.3 Dual (Observer Form) Realization 83
  • 3.2.4 Modal Realization 83
  • 3.2.5 Diagonalization and Decoupling 85
  • 3.3 Linear Transformation of State Variables 86
  • 3.3.1 Transformation into Controller Form 86
  • 3.3.2 Transformation into Modal Form 88 Skill Assessment Questions 90.
  • 4 Feedback Control Systems 93
  • 4.1 Static Gain Controller 95
  • 4.2 Dynamic Controllers 96
  • 4.2.1 First-Order Phase-Lead and Phase-Lag Controllers 97
  • 4.2.2 The PID Controller 99
  • 4.2.3 Rate Feedback Controllers 103 Skill Assessment Questions 108
  • 5 Control System Design Objectives 111
  • 5.1 Stability of the Closed-Loop System 112
  • 5.1.1 Closed-Loop Characteristic Polynomial 112
  • 5.1.2 Stability Determination by Algebraic Methods 114
  • 5.1.3 Stability Determination from the Bode Plot 116
  • 5.2 Transient Response Improvement 117
  • 5.2.1 System Design Specifications 119
  • 5.2.2 The Desired Characteristic Polynomial 121
  • 5.2.3 Optimal Performance Indices 123
  • 5.3 Steady-State Error Improvement 124
  • 5.3.1 The Steady-State Error 124
  • 5.3.2 System Error Constants 125
  • 5.3.3 Steady-State Error to Ramp Input 126
  • 5.4 Disturbance Rejection 128
  • 5.5 Sensitivity and Robustness 130 Skill Assessment Questions 132
  • 6 Control System Design with Root Locus 133
  • 6.1 The Root Locus 135
  • 6.1.1 Roots of the Characteristic Polynomial 135
  • 6.1.2 Root Locus Rules 136
  • 6.1.3 Obtaining Root Locus Plot in MATLAB 138
  • 6.1.4 Stability from the Root Locus Plot 139
  • 6.1.5 Analytic Root Locus Conditions 141
  • 6.2 Static Controller Design 143
  • 6.3 Dynamic Controller Design 144
  • 6.3.1 Transient Response Improvement 145
  • 6.3.2 Steady-State Error Improvement 151
  • 6.3.3 Lead-Lag and PID Designs 152
  • 6.3.4 Rate Feedback Compensation 156
  • 6.3.5 Controller Designs Compared 161
  • 6.4 Controller Realization 163
  • 6.4.1 Phase-Lead/Phase-Lag Controllers 164
  • 6.4.2 PD, PI, PID Controllers 164 Skill Assessment Questions 165
  • 7 Design of Sampled-Data Systems 167
  • 7.1 Models of Sampled-Data Systems 169
  • 7.1.1 Z-transform 169
  • 7.1.2 Zero-Order Hold 171
  • 7.1.3 Pulse Transfer Function 172
  • 7.2 Sampled-Data System Response 175
  • 7.2.1 Difference Equation Solution by Iteration 175
  • 7.2.2 Unit-Pulse Response 176
  • 7.2.3 Unit-Step Response 179.
  • 7.2.4 Response to Arbitrary Inputs 183
  • 7.3 Stability in the Case of Sampled-Data Systems 184
  • 7.3.1 Jury's Stability Test 184
  • 7.3.2 Stability Through Bilinear Transform 185
  • 7.4 Closed-Loop Sampled-Data Systems 186
  • 7.4.1 Closed-Loop System Stability 186
  • 7.4.2 Unit-Step Response 187
  • 7.4.3 Steady-State Tracking Error 190
  • 7.5 Controllers for Sampled-Data Systems 192
  • 7.5.1 Root Locus Design of Digital Controllers 193
  • 7.5.2 Analog and Digital Controller Design Compared 196
  • 7.5.3 Digital Controller Design by Emulation 200
  • 7.5.4 Emulation of Analog PID Controller 203 Skill Assessment Questions 206
  • 8 Controller Design for State Variable Models 211
  • 8.1 State Feedback Controller Design 212
  • 8.1.1 Pole Placement with State Feedback 213
  • 8.1.2 Pole Placement in the Controller Form 215
  • 8.1.3 Pole Placement using Bass-Gura Formula 217
  • 8.1.4 Pole Placement using Ackermann's Formula 218
  • 8.1.5 Pole Placement using Sylvester's Equation 220
  • 8.2 Tracking System Design 222
  • 8.2.1 Tracking System Design with Feedforward Gain 222
  • 8.2.2 Tracking PI Controller Design 225
  • 8.3 State Variable Models of Sampled-Data Systems 230
  • 8.3.1 Discretizing the State Equations 230
  • 8.3.2 Solution to the Discrete State Equations 232
  • 8.3.3 Pulse Transfer Function from State Equations 234
  • 8.4 Controllers for Discrete State Variable Models 235
  • 8.4.1 Emulating an Analog Controller 235
  • 8.4.2 Pole Placement Design of Digital Controller 236
  • 8.4.3 Deadbeat Controller Design 238
  • 8.4.4 Tracking PI Controller Design 241 Skill Assessment Questions 244
  • 9 Frequency Response Design of Compensators 247
  • 9.1 Frequency Response Representation 248
  • 9.1.1 The Bode Plot 248
  • 9.1.2 The Nyquist Plot 250
  • 9.2 Measures of Performance 254
  • 9.2.1 Relative Stability 254
  • 9.2.2 Phase Margin and the Transient Response 256
  • 9.2.3 Error Constants and System Type 259
  • 9.2.4 System Sensitivity 260
  • 9.3 Frequency Response Design 261.
  • 9.3.1 Gain Compensation 261
  • 9.3.2 Phase-Lag Compensation 262
  • 9.3.3 Phase-Lead Compensation 264
  • 9.3.4 Lead-Lag Compensation 267
  • 9.3.5 PI Compensator 269
  • 9.3.6 PD Compensator 271
  • 9.3.7 PID Compensator 273
  • 9.3.8 Compensator Designs Compared 275
  • 9.4 Closed-Loop Frequency Response 276 Skill Assessment Questions 280 Appendix 281
  • Index 285
  • About the Author 289.