|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
KNOVEL_on1223096880 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
201121s2020 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d YDX
|d YDXIT
|d OCLCO
|d OCLCF
|d N$T
|d OCLCQ
|d TYFRS
|d OCLCQ
|d EBLCP
|d OCLCQ
|d ESU
|d OCLCQ
|
019 |
|
|
|a 1184236554
|a 1193114697
|
020 |
|
|
|a 9788770221511
|q (electronic bk.)
|
020 |
|
|
|a 8770221510
|q (electronic book)
|
020 |
|
|
|a 9781003336907
|q (electronic bk.)
|
020 |
|
|
|a 1003336906
|q (electronic bk.)
|
020 |
|
|
|a 9781000794564
|q (electronic bk. : PDF)
|
020 |
|
|
|a 1000794563
|q (electronic bk. : PDF)
|
020 |
|
|
|a 9781000791440
|q (electronic bk. : EPUB)
|
020 |
|
|
|a 1000791440
|q (electronic bk. : EPUB)
|
020 |
|
|
|z 8770221529
|
020 |
|
|
|z 9788770221528
|
024 |
7 |
|
|a 10.1201/9781003336907
|2 doi
|
029 |
1 |
|
|a AU@
|b 000070134860
|
035 |
|
|
|a (OCoLC)1223096880
|z (OCoLC)1184236554
|z (OCoLC)1193114697
|
037 |
|
|
|a 9781003336907
|b Taylor & Francis
|
050 |
|
4 |
|a TJ213
|b .I63 2020
|
072 |
|
7 |
|a SCI
|x 024000
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 009020
|2 bisacsh
|
072 |
|
7 |
|a TEC
|x 041000
|2 bisacsh
|
072 |
|
7 |
|a TJK
|2 bicssc
|
082 |
0 |
4 |
|a 629.8
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Iqbal, Kamran.
|
245 |
1 |
2 |
|a A First Course in Control System Design.
|
250 |
|
|
|a 2nd ed.
|
264 |
|
1 |
|a Aalborg :
|b River Publishers,
|c 2020.
|
300 |
|
|
|a 1 online resource (324 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a River Publishers Series in Automation, Control and Robotics Ser.
|
520 |
|
|
|a This book discusses control systems design from a model-basedperspective for dynamic system models of single-input single-output type. Theemphasis in this book is on understanding and applying the techniques thatenable the design of effective control systems in multiple engineeringdisciplines. The book covers both time-domain and the frequency-domain designmethods, as well as controller design for both continuous-time anddiscrete-time systems. MATLAB© and its Control Systems Toolbox are extensivelyused for design.
|
588 |
0 |
|
|a Print version record.
|
545 |
0 |
|
|a Kamran Iqbal
|
505 |
0 |
|
|a Foreword xi -- Preface xiii -- Acknowledgement xxi -- List of Figures xxiii -- List of Tables xxix -- List of Abbreviations xxxi -- 1 Mathematical Models of Physical Systems 1 -- 1.1 Modeling of Physical Systems 2 -- 1.1.1 Model Variables and Element Types 3 -- 1.1.2 First-Order ODE Models 4 -- 1.1.3 Solving First-Order ODE Models with Step Input 8 -- 1.1.4 Second-Order ODE Models 10 -- 1.1.5 Solving Second-Order ODE Models 12 -- 1.2 Transfer Function Models 15 -- 1.2.1 DC Motor Model 16 -- 1.2.2 Industrial Process Models 20 -- 1.3 State Variable Models 21 -- 1.4 Linearization of Nonlinear Models 24 -- 1.4.1 Linearization About an Operating Point 25 -- 1.4.2 Linearization of a General Nonlinear Model 27 Skill Assessment Questions 29 -- 2 Analysis of Transfer Function Models 31 -- 2.1 Characterization of Transfer Function Models 32 -- 2.1.1 System Poles and Zeros 32 -- 2.1.2 System Natural Response 34 -- 2.2 System Response to Inputs 36 -- 2.2.1 The Impulse Response 36 -- 2.2.2 The Step Response 38 -- 2.2.3 Characterizing the System Transient Response 44 -- 2.2.4 System Stability 46 -- 2.3 Sinusoidal Response of a System 49 -- 2.3.1 Sinusoidal Response of Low-Order Systems 50 -- 2.3.2 Visualizing the Frequency Response 52 Skill Assessment Questions 59 -- 3 Analysis of State Variable Models 63 -- 3.1 State Variable Models 64 -- 3.1.1 Solution to the State Equations 65 -- 3.1.2 Laplace Transform Solution and Transfer Function 66 -- 3.1.3 The State-Transition Matrix 68 -- 3.1.4 Homogenous State Equation and Asymptotic Stability 70 -- 3.1.5 System Response for State Variable Models 74 -- 3.2 State Variable Realization of Transfer Function Models 77 -- 3.2.1 Simulation Diagrams 78 -- 3.2.2 Controller Form Realization 80 -- 3.2.3 Dual (Observer Form) Realization 83 -- 3.2.4 Modal Realization 83 -- 3.2.5 Diagonalization and Decoupling 85 -- 3.3 Linear Transformation of State Variables 86 -- 3.3.1 Transformation into Controller Form 86 -- 3.3.2 Transformation into Modal Form 88 Skill Assessment Questions 90.
|
505 |
8 |
|
|a 4 Feedback Control Systems 93 -- 4.1 Static Gain Controller 95 -- 4.2 Dynamic Controllers 96 -- 4.2.1 First-Order Phase-Lead and Phase-Lag Controllers 97 -- 4.2.2 The PID Controller 99 -- 4.2.3 Rate Feedback Controllers 103 Skill Assessment Questions 108 -- 5 Control System Design Objectives 111 -- 5.1 Stability of the Closed-Loop System 112 -- 5.1.1 Closed-Loop Characteristic Polynomial 112 -- 5.1.2 Stability Determination by Algebraic Methods 114 -- 5.1.3 Stability Determination from the Bode Plot 116 -- 5.2 Transient Response Improvement 117 -- 5.2.1 System Design Specifications 119 -- 5.2.2 The Desired Characteristic Polynomial 121 -- 5.2.3 Optimal Performance Indices 123 -- 5.3 Steady-State Error Improvement 124 -- 5.3.1 The Steady-State Error 124 -- 5.3.2 System Error Constants 125 -- 5.3.3 Steady-State Error to Ramp Input 126 -- 5.4 Disturbance Rejection 128 -- 5.5 Sensitivity and Robustness 130 Skill Assessment Questions 132 -- 6 Control System Design with Root Locus 133 -- 6.1 The Root Locus 135 -- 6.1.1 Roots of the Characteristic Polynomial 135 -- 6.1.2 Root Locus Rules 136 -- 6.1.3 Obtaining Root Locus Plot in MATLAB 138 -- 6.1.4 Stability from the Root Locus Plot 139 -- 6.1.5 Analytic Root Locus Conditions 141 -- 6.2 Static Controller Design 143 -- 6.3 Dynamic Controller Design 144 -- 6.3.1 Transient Response Improvement 145 -- 6.3.2 Steady-State Error Improvement 151 -- 6.3.3 Lead-Lag and PID Designs 152 -- 6.3.4 Rate Feedback Compensation 156 -- 6.3.5 Controller Designs Compared 161 -- 6.4 Controller Realization 163 -- 6.4.1 Phase-Lead/Phase-Lag Controllers 164 -- 6.4.2 PD, PI, PID Controllers 164 Skill Assessment Questions 165 -- 7 Design of Sampled-Data Systems 167 -- 7.1 Models of Sampled-Data Systems 169 -- 7.1.1 Z-transform 169 -- 7.1.2 Zero-Order Hold 171 -- 7.1.3 Pulse Transfer Function 172 -- 7.2 Sampled-Data System Response 175 -- 7.2.1 Difference Equation Solution by Iteration 175 -- 7.2.2 Unit-Pulse Response 176 -- 7.2.3 Unit-Step Response 179.
|
505 |
8 |
|
|a 7.2.4 Response to Arbitrary Inputs 183 -- 7.3 Stability in the Case of Sampled-Data Systems 184 -- 7.3.1 Jury's Stability Test 184 -- 7.3.2 Stability Through Bilinear Transform 185 -- 7.4 Closed-Loop Sampled-Data Systems 186 -- 7.4.1 Closed-Loop System Stability 186 -- 7.4.2 Unit-Step Response 187 -- 7.4.3 Steady-State Tracking Error 190 -- 7.5 Controllers for Sampled-Data Systems 192 -- 7.5.1 Root Locus Design of Digital Controllers 193 -- 7.5.2 Analog and Digital Controller Design Compared 196 -- 7.5.3 Digital Controller Design by Emulation 200 -- 7.5.4 Emulation of Analog PID Controller 203 Skill Assessment Questions 206 -- 8 Controller Design for State Variable Models 211 -- 8.1 State Feedback Controller Design 212 -- 8.1.1 Pole Placement with State Feedback 213 -- 8.1.2 Pole Placement in the Controller Form 215 -- 8.1.3 Pole Placement using Bass-Gura Formula 217 -- 8.1.4 Pole Placement using Ackermann's Formula 218 -- 8.1.5 Pole Placement using Sylvester's Equation 220 -- 8.2 Tracking System Design 222 -- 8.2.1 Tracking System Design with Feedforward Gain 222 -- 8.2.2 Tracking PI Controller Design 225 -- 8.3 State Variable Models of Sampled-Data Systems 230 -- 8.3.1 Discretizing the State Equations 230 -- 8.3.2 Solution to the Discrete State Equations 232 -- 8.3.3 Pulse Transfer Function from State Equations 234 -- 8.4 Controllers for Discrete State Variable Models 235 -- 8.4.1 Emulating an Analog Controller 235 -- 8.4.2 Pole Placement Design of Digital Controller 236 -- 8.4.3 Deadbeat Controller Design 238 -- 8.4.4 Tracking PI Controller Design 241 Skill Assessment Questions 244 -- 9 Frequency Response Design of Compensators 247 -- 9.1 Frequency Response Representation 248 -- 9.1.1 The Bode Plot 248 -- 9.1.2 The Nyquist Plot 250 -- 9.2 Measures of Performance 254 -- 9.2.1 Relative Stability 254 -- 9.2.2 Phase Margin and the Transient Response 256 -- 9.2.3 Error Constants and System Type 259 -- 9.2.4 System Sensitivity 260 -- 9.3 Frequency Response Design 261.
|
505 |
8 |
|
|a 9.3.1 Gain Compensation 261 -- 9.3.2 Phase-Lag Compensation 262 -- 9.3.3 Phase-Lead Compensation 264 -- 9.3.4 Lead-Lag Compensation 267 -- 9.3.5 PI Compensator 269 -- 9.3.6 PD Compensator 271 -- 9.3.7 PID Compensator 273 -- 9.3.8 Compensator Designs Compared 275 -- 9.4 Closed-Loop Frequency Response 276 Skill Assessment Questions 280 Appendix 281 -- Index 285 -- About the Author 289.
|
590 |
|
|
|a Knovel
|b ACADEMIC - Process Design, Control & Automation
|
650 |
|
0 |
|a Automatic control
|x Design.
|
650 |
|
7 |
|a SCIENCE / Energy
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY / Engineering / Civil
|2 bisacsh
|
650 |
|
7 |
|a TECHNOLOGY / Telecommunications
|2 bisacsh
|
650 |
|
7 |
|a Automatic control
|x Design.
|2 fast
|0 (OCoLC)fst00822707
|
655 |
|
0 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a Iqbal, Kamran.
|t First Course in Control System Design, Second Edition.
|b 2nd ed.
|d Aalborg : River Publishers, 2020
|z 9788770221511
|
830 |
|
0 |
|a River Publishers series in automation, control and robotics.
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpFCCSDE02/toc
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL30251711
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 18126331
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6300566
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 2634390
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 18105841
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 16894488
|
994 |
|
|
|a 92
|b IZTAP
|