Cargando…

Welding and joining of aerospace materials /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Chaturvedi, M. C. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford : Woodhead Publishing, [2021]
Edición:2nd ed.
Colección:Woodhead Publishing series in welding and other joining technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Welding and Joining of Aerospace Materials
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: New welding techniques for aerospace materials
  • 1.1. Introduction
  • 1.2. Airworthiness implications of new welding and joining technologies
  • 1.2.1. The use of friction stir welding (FSW) in the eclipse 500 aircraft
  • 1.2.2. The use of laser beam welding for Airbus aircraft
  • 1.2.3. The use of laser blown powder additive manufacturing for the repair of turbine seal segments
  • 1.2.4. The use of laser powder bed fusion additive manufacturing for the manufacture of the LEAP engine fuel nozzle
  • 1.3. Future developments and trends
  • 1.3.1. Friction stir welding of aluminum alloys
  • 1.3.2. Friction stir welding of titanium and nickel alloys
  • 1.3.3. Linear friction welding (LFW)
  • 1.3.4. Hybrid laser arc welding
  • 1.3.5. Reduced pressure electron beam welding
  • 1.3.6. Electron beam texturing (EBT)
  • 1.3.7. Reduced spatter MIG welding of titanium alloys
  • 1.3.8. Additive manufacturing (AM)
  • 1.4. Review of welding processes
  • References
  • Chapter 2: Inertia friction welding (IFW) for aerospace applications
  • 2.1. Introduction
  • 2.1.1. Process development
  • 2.1.2. Inertia friction welding (IFW) process description
  • 2.1.3. IFW process parameters
  • 2.1.4. IFW process stages
  • 2.1.5. IFW production machines
  • 2.1.6. Advantages and disadvantages of IFW
  • 2.2. Process parameters, heat generation and modeling
  • 2.2.1. Process parameters and joint design
  • 2.2.1.1. Example
  • 2.2.2. Heat generation
  • 2.2.3. Analytical and numerical (finite-difference) modeling
  • 2.2.4. Thermal and thermomechanical modeling
  • 2.3. Microstructural development
  • 2.3.1. Nickel-based superalloys
  • 2.3.2. Steels
  • 2.3.3. Titanium alloys
  • 2.3.4. Other alloys
  • 2.4. Development of mechanical properties
  • 2.4.1. Ni-based superalloys
  • 2.4.1.1. Microhardness development
  • 2.4.1.2. Tensile properties
  • 2.4.1.3. Fatigue-crack propagation (FCP)
  • 2.4.2. Steels
  • 2.4.2.1. Microhardness development
  • 2.4.3. Titanium alloys
  • 2.4.3.1. Tensile properties
  • 2.4.3.2. Fatigue properties
  • 2.5. Residual stress development
  • 2.6. Future trends
  • 2.7. Source of further information and advice
  • References
  • Chapter 3: Laser welding of metals for aerospace and other applications
  • 3.1. Introduction
  • 3.2. Operating principles and components of laser sources-An overview
  • 3.3. Key characteristics of laser light
  • 3.4. Basic phenomena of laser light interaction with metals
  • 3.4.1. Absorption
  • 3.4.2. Conduction and melting
  • 3.4.3. Vaporization and plasma formation
  • 3.5. Laser welding fundamentals
  • 3.5.1. Conduction-limited laser welding
  • 3.5.2. Keyhole laser welding
  • 3.6. Laser weldability of titanium alloys
  • 3.6.1. Embrittlement
  • 3.6.2. Cracking
  • 3.6.3. Hydrogen porosity