Welding and joining of aerospace materials /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Duxford :
Woodhead Publishing,
[2021]
|
Edición: | 2nd ed. |
Colección: | Woodhead Publishing series in welding and other joining technologies.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Welding and Joining of Aerospace Materials
- Copyright
- Contents
- Contributors
- Chapter 1: New welding techniques for aerospace materials
- 1.1. Introduction
- 1.2. Airworthiness implications of new welding and joining technologies
- 1.2.1. The use of friction stir welding (FSW) in the eclipse 500 aircraft
- 1.2.2. The use of laser beam welding for Airbus aircraft
- 1.2.3. The use of laser blown powder additive manufacturing for the repair of turbine seal segments
- 1.2.4. The use of laser powder bed fusion additive manufacturing for the manufacture of the LEAP engine fuel nozzle
- 1.3. Future developments and trends
- 1.3.1. Friction stir welding of aluminum alloys
- 1.3.2. Friction stir welding of titanium and nickel alloys
- 1.3.3. Linear friction welding (LFW)
- 1.3.4. Hybrid laser arc welding
- 1.3.5. Reduced pressure electron beam welding
- 1.3.6. Electron beam texturing (EBT)
- 1.3.7. Reduced spatter MIG welding of titanium alloys
- 1.3.8. Additive manufacturing (AM)
- 1.4. Review of welding processes
- References
- Chapter 2: Inertia friction welding (IFW) for aerospace applications
- 2.1. Introduction
- 2.1.1. Process development
- 2.1.2. Inertia friction welding (IFW) process description
- 2.1.3. IFW process parameters
- 2.1.4. IFW process stages
- 2.1.5. IFW production machines
- 2.1.6. Advantages and disadvantages of IFW
- 2.2. Process parameters, heat generation and modeling
- 2.2.1. Process parameters and joint design
- 2.2.1.1. Example
- 2.2.2. Heat generation
- 2.2.3. Analytical and numerical (finite-difference) modeling
- 2.2.4. Thermal and thermomechanical modeling
- 2.3. Microstructural development
- 2.3.1. Nickel-based superalloys
- 2.3.2. Steels
- 2.3.3. Titanium alloys
- 2.3.4. Other alloys
- 2.4. Development of mechanical properties
- 2.4.1. Ni-based superalloys
- 2.4.1.1. Microhardness development
- 2.4.1.2. Tensile properties
- 2.4.1.3. Fatigue-crack propagation (FCP)
- 2.4.2. Steels
- 2.4.2.1. Microhardness development
- 2.4.3. Titanium alloys
- 2.4.3.1. Tensile properties
- 2.4.3.2. Fatigue properties
- 2.5. Residual stress development
- 2.6. Future trends
- 2.7. Source of further information and advice
- References
- Chapter 3: Laser welding of metals for aerospace and other applications
- 3.1. Introduction
- 3.2. Operating principles and components of laser sources-An overview
- 3.3. Key characteristics of laser light
- 3.4. Basic phenomena of laser light interaction with metals
- 3.4.1. Absorption
- 3.4.2. Conduction and melting
- 3.4.3. Vaporization and plasma formation
- 3.5. Laser welding fundamentals
- 3.5.1. Conduction-limited laser welding
- 3.5.2. Keyhole laser welding
- 3.6. Laser weldability of titanium alloys
- 3.6.1. Embrittlement
- 3.6.2. Cracking
- 3.6.3. Hydrogen porosity