Cargando…

Bioelectrosynthesis Principles and Technologies for Value-Added Products.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wang, Aijie
Otros Autores: Liu, Wenzong, Zhang, Bo, Cai, Weiwei
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Newark : John Wiley & Sons, Incorporated, 2020.
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Section I Principle and Products Overview of Bioelectrosynthesis
  • Chapter 1 Principle and Product Overview of Bioelectrosynthesis
  • 1.1 Introduction
  • 1.2 Evolution of Bioelectrosynthesis
  • 1.3 Fundamental Principles of Bioelectrosynthesis
  • 1.4 Plethora of Applications for Chemical Production
  • 1.4.1 Hydrogen Production
  • 1.4.2 Methane Production
  • 1.4.3 Alcohol Production
  • 1.4.4 Short-chain Organic Acid Production
  • 1.4.5 Ammonia Production and Nitrogen Recovery
  • 1.5 Key Factors for Improving MES Performance
  • 1.5.1 Electron Transfer from the Cathode to the Cell
  • 1.5.2 Cathode Materials
  • 1.6 Summary
  • References
  • Section II Biogas Production and Upgrading Technology via Bioelectrolysis
  • Chapter 2 Hydrogen Production from Waste Stream with Microbial Electrolysis Cells
  • 2.1 Construction of MEC and Scale-up
  • 2.1.1 Laboratory-Scale MEC
  • 2.1.2 Pilot-Scale MEC
  • 2.2 Electrode Material of MEC
  • 2.2.1 Anode of MEC
  • 2.2.2 Cathode of MEC
  • 2.2.2.1 Cathode Base Materials in MEC
  • 2.2.2.2 Cathode Catalysts in MEC
  • 2.2.2.3 Biological Catalysts in MEC
  • 2.3 Effect of Operation Conditions on Hydrogen Production
  • 2.3.1 Effect of Substrate on Hydrogen Production
  • 2.3.2 Effects of Applied Voltage and Magnetic Field on Hydrogen Production
  • 2.3.3 Effect of pH on Hydrogen Production
  • 2.3.4 Effect of Temperature on Hydrogen Production
  • 2.4 Electroactive Biofilm Microbiome and Syntrophic Interaction in MEC
  • 2.4.1 Anodic EAM and Biofilm Formation
  • 2.4.2 EAM in the Cathode
  • 2.4.3 Microbial Community and Syntrophic Interaction
  • 2.4.3.1 Pure Culture and Mixed Culture
  • 2.4.3.2 Microbiome in Electroactive Biofilms
  • 2.4.3.3 Suppressing the Methanogens
  • 2.5 Coupled System for Biohydrogen Production
  • 2.5.1 MEC-MFC-Coupled System for Biohydrogen Production
  • 2.5.2 AD-MEC-Coupled System for Hydrogen Production
  • 2.5.3 Solar-Powered MEC-Coupled System for Hydrogen Production
  • 2.5.4 Other Modified MEC System for Hydrogen Production
  • 2.6 Challenges and Outlook
  • Acknowledgment
  • References
  • Chapter 3 A Promising Strategy for Renewable Energy Recovery: Conversion of Organic Wastes to Methane via Electromethanogenesis
  • 3.1 Introduction
  • 3.2 Advances in Electromethanogenesis
  • 3.3 Mechanisms of Electromethanogenesis
  • 3.3.1 Electron Transfer from Electrode to Methanogens
  • 3.3.2 Microbial Communities of Biocathode
  • 3.4 Applications of Electromethanogenesis
  • 3.4.1 Renewable Energy Storage
  • 3.4.2 Biogas Upgrading
  • 3.4.3 Organic Waste Treatment
  • 3.5 Outlook
  • References
  • Chapter 4 Microbial Electrolysis Cell (MEC): An Innovative Waste to Bioenergy and Value-Added By-product Technology
  • 4.1 Introduction
  • 4.2 Microbial Electrolysis Cell (MEC) for Hydrogen Production and Waste Treatment
  • 4.2.1 Working Principles