Cargando…

Gyrators, simulated inductors and related immittances realizations and applications

This book provides coverage of the major gyrator circuits, simulated inductors and related synthetic impedances. It offers a review of research in this field to date, and includes a wide range and number of circuit examples, along with their relevant design equations, limitations, performance featur...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Senani, Raj (Autor), Bhaskar, Data Ram (Autor), Singh, Vinod Kumar, 1977- (Autor), Singh, Abdhesh Kumar (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Stevenage Institution of Engineering and Technology 2020
Colección:Materials, circuits and devices series ; 48.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • About the authors
  • Preface
  • Acknowledgement
  • 1. Gyrators, integrated inductors and simulated inductors
  • Abstract
  • 1.1 Prologue
  • 1.2 Basic one-port circuit elements
  • 1.3 Basic two-port circuit elements
  • 1.3.1 The transformer
  • 1.3.2 The gyrator
  • 1.3.3 The two-port impedance converters and inverters
  • 1.4 The pathological elements
  • 1.5 Multi-terminal gyrator
  • 1.6 Multiport inverters/converters
  • 1.7 Commercially available inductors and Coilcraft
  • 1.8 Basic difficulties in micro-miniaturization of inductors
  • 1.9 Integrated inductors and transformers on the chip
  • 1.10 Power gyrators
  • 1.11 Use of ANSYS and COMSOL for the analysis of inductor designs
  • 1.12 The need for simulated inductors
  • 1.13 Concluding remarks
  • References
  • 2. Gyrators and simulated inductors using op-amps
  • Abstract
  • 2.1 Introduction
  • 2.2 The gyrator
  • 2.3 Op-amp gyrators and related circuits
  • 2.3.1 NIC-based gyrator
  • 2.3.2 VCCS-based gyrator
  • 2.3.3 Generalized impedance converters (GIC)/gyrators
  • 2.3.4 Two-op-amp resistively variable capacitance simulators
  • 2.3.5 Two-op-amp lossless inductance simulator
  • 2.3.6 Tripathi-Patranabis lossless grounded inductor
  • 2.3.7 Lossless GI using summer/subtractor circuits
  • 2.3.8 Two modified forms of the GIC and their applications
  • 2.4 Single-op-amp lossless inductance simulators
  • 2.4.1 Orchard-Willson gyrator
  • 2.4.2 Schmidt-Lee circuit
  • 2.4.3 Ramsey gyrator
  • 2.4.4 Horn-Moschytz circuit
  • 2.5 Economic inductance simulators and resonators
  • 2.5.1 Ford-Girling circuit
  • 2.5.2 Prescott circuit
  • 2.5.3 Berndt-Dutta Roy circuit
  • 2.5.4 Caggiano circuit
  • 2.5.5 Patranabis circuit
  • 2.5.6 The parallel/series RL inductors derived by Rao-Venkateswaran
  • 2.5.7 Ahmed-Dutta Roy technique of deriving grounded-capacitor lossy GI
  • 2.5.8 Senani-Tiwari circuit
  • 2.5.9 Soliman-Awad tunable active inductor
  • 2.5.10 Nagarajan-Dutta Roy-Choudhary circuit
  • 2.5.11 Senani's single-resistance-tunable GIs
  • 2.6 Lossless floating impedance simulators using four op-amps
  • 2.6.1 Riordan's method of creating a lossless FI
  • 2.6.2 GIC method of simulating FI
  • 2.6.3 Tripathi-Patranabis FI
  • 2.6.4 Mutator-simulated floating inductors
  • 2.7 The multi-port immittance converters/inverters and multi-port gyrators
  • 2.8 Three-op-amp-based floating immittance simulators
  • 2.8.1 Three-op-amp-single-capacitor FIs based on GIC-type networks
  • 2.8.2 FI realizations using three op-amps along with a grounded capacitor
  • 2.8.3 Senani's single-resistance-controllable lossless FI
  • 2.8.4 Patranabis-Paul capacitance floatation circuit
  • 2.9 Lossless FIs using only two op-amps
  • 2.9.1 The-Yanagisawa circuit
  • 2.9.2 Sudo-Teramoto circuit
  • 2.10 Economic op-amp-based lossless/lossy FIs
  • The operational transconductance amplifier based gyrators and impedance simulators
  • Synthetic impedances using current conveyors and their variants
  • Current feedback-op-amp-based synthetic impedances
  • Applications of FTFN/OFA and OMAs in impedance synthesis
  • Realization of voltage-controlled impedances
  • Impedance synthesis using modern active building blocks
  • Transistor-level realization of electronically controllable ground and floating resistors
  • Bipolar and CMOS active inductors and transformers
  • Recent developments and concluding remarks