Cargando…

The mechanisms of metallurgical failure : the origin of fracture /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Campbell, John, 1938- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Kidlington, Oxford, United Kingdom ; Cambridge, MA : Butterworth-Heinemann, an imprint of Elsevier, [2020]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • THE MECHANISMS OF METALLURGICAL FAILURE
  • THE MECHANISMS OF METALLURGICAL FAILURE
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Acknowledgments
  • Introduction
  • 1
  • The fracture of liquids
  • 1.1 Theoretical strength of liquids
  • 1.1.1 Classical continuum theory
  • 1.1.2 Classical bubble nucleation
  • 1.1.3 Homogeneous nucleation
  • 1.1.3.1 Heterogeneous nucleation
  • 1.1.4 Nucleation conditions for shrinkage pores
  • 1.1.5 Joint gas and shrinkage conditions
  • 1.1.6 Pseudo-heterogeneous nucleation of pores
  • 1.2 Experimental demonstration of hydrostatic tensions in liquids
  • 1.3 Nonclassical pore formation mechanisms
  • 1.3.1 High energy radiation
  • 1.3.2 Preexisting suspension of bubbles
  • 1.4 Entrainment processes
  • 1.4.1 Entrainment of bifilms
  • 1.4.1.1 Visual evidence for bifilms
  • 1.4.1.2 Surface turbulence
  • 1.4.2 Weber Number We
  • 1.4.3 Froude number Fr
  • 1.4.4 Reynolds number Re
  • 1.4.5 Oxide skins from melt charge materials
  • 1.4.6 Pouring
  • 1.4.7 The critical fall height
  • 1.4.8 The oxide lap from surface flooding
  • 1.4.9 Oxide lap as a confluence weld
  • 1.4.10 The oxide flow tube
  • 1.4.11 Microjetting
  • 1.4.12 Entrainment of bubbles
  • 1.4.12.1 Bubble trails
  • 1.4.12.2 Bubble damage
  • 1.4.13 Other entrainment defects
  • 1.4.13.1 Extrinsic inclusions
  • 1.4.13.2 Flux and slag inclusions
  • 1.4.14 Furling and unfurling
  • 1.4.14.1 Inflation by gas
  • 1.4.14.2 Expansion by solidification shrinkage (3-D strain)
  • 1.4.14.3 Transgranular straightening (flattening) by dendrite growth
  • 1.4.14.4 Intergranular straightening by grains
  • 1.4.14.5 Straightening (flattening) by intermetallics and second phases
  • 1.4.14.6 Flattening by rigid flat intermetallic or second phase
  • 1.4.14.7 Opening by 1-D cooling strain
  • 1.4.14.8 Opening under service stress
  • 1.4.14.8.1 Rate of unfurling
  • 1.4.14.8.2 Variations in unfurling behavior
  • 1.4.15 Detrainment
  • 1.4.15.1 Detrainment techniques take a variety of forms
  • 1.4.16 Deactivation of entrained films
  • 1.4.16.1 Loss of gas
  • 1.4.16.2 Closing of bifilms by pressure
  • 1.4.16.3 Bonding by diffusion reaction
  • 1.4.16.4 Bonding by liquid binder
  • 1.4.17 Morphological transformations
  • 1.4.18 Soluble, transient films
  • 1.4.19 Liquid Oxide Entrainment (inclusion shape control)
  • 1.4.20 Nonprotective and unstable oxides
  • 1.5 Entrainment avoidance
  • 1.6 The quest for clean steels
  • 1.6.1 Ingot casting
  • 1.6.2 Continuous casting
  • 1.6.2.1 Nozzle design
  • 1.6.3 Secondary remelting processes
  • 1.6.3.1 Vacuum induction melting (VIM)
  • 1.6.3.2 Vacuum arc remelting (VAR)
  • 1.6.3.3 Electroslag remelting (ESR)
  • 1.6.3.4 Commercial thoughts
  • 1.6.4 Shaped castings
  • 1.7 Potential for quality assurance
  • 2
  • Fracture in the liquid/solid state
  • 2.1 Interdendritic flow