Cargando…

Handbook of silicon based mems materials and technologies /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Tilli, Markku (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2020.
Edición:Third edition.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Handbook of Silicon Based MEMS Materials and Technologies
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • Where is silicon based MEMS heading to?
  • References
  • I. Silicon as MEMS Material
  • 1 Properties of silicon
  • 1.1 Properties of silicon
  • 1.1.1 Crystallography of silicon
  • 1.1.1.1 Miller index (hkl) system
  • 1.1.1.2 Stereographic projection
  • 1.1.2 Defects in silicon lattice
  • 1.1.3 Mechanical properties of silicon
  • 1.1.4 Electrical properties
  • 1.1.4.1 Introduction-dopants and impurities in silicon
  • 1.1.4.2 Piezoresistive effect in silicon
  • General piezoresistive effect
  • Strain
  • Stress in anisotropic materials
  • Strain effect on resistivity
  • Linearity
  • Effect of temperature and doping
  • Example of a piezoresistive sensor design
  • Surface effects
  • References
  • 2 Czochralski growth of silicon crystals
  • 2.1 The Czochralski crystal-growing furnace
  • 2.1.1 Crucible
  • 2.1.2 Hot zone materials
  • 2.1.3 Hot zone structure
  • 2.1.4 Gas flow
  • 2.2 Stages of growth process
  • 2.2.1 Melting
  • 2.2.2 Neck
  • 2.2.3 Crown
  • 2.2.4 Body
  • 2.2.5 Tail
  • 2.2.6 Shut-off
  • 2.3 Selected issues of crystal growth
  • 2.3.1 Diameter control
  • 2.3.2 Doping
  • 2.3.3 Hot zone lifetime
  • 2.4 Improved thermal and gas-flow designs
  • 2.5 Heat transfer
  • 2.6 Melt convection
  • 2.6.1 Free convection
  • 2.6.2 Crucible rotation
  • 2.6.3 Crystal rotation
  • 2.6.4 Marangoni convection and gas shear
  • 2.7 Magnetic fields
  • 2.7.1 Cusp field
  • 2.7.2 Transverse field
  • 2.7.3 Melt flows under transverse field
  • 2.7.4 Time-dependent fields
  • 2.8 Hot recharging and continuous feed
  • 2.8.1 Hot recharging
  • 2.8.2 Charge topping
  • 2.8.3 Crucible modifications
  • 2.8.4 Continuous Czochralski growth
  • 2.9 Heavily n-type doped silicon and constitutional supercooling
  • 2.9.1 Constitutional supercooling
  • 2.9.2 Melting-point depression
  • 2.9.3 Origin of dopant gradient in the melt
  • 2.9.4 Path to lower resistivity
  • 2.10 Growth of large diameter crystals
  • 2.10.1 Neck growth for large crystals
  • 2.10.2 Neck extension
  • 2.10.3 Additional stresses on neck
  • 2.10.4 Dislocations oriented in (100) direction in large diameter crystals
  • 2.10.5 Crucible wall temperature
  • 2.10.6 Double-layered crucible structure
  • 2.10.7 Crucible deformations
  • 2.10.8 Intentional devitrification
  • 2.10.9 Transverse or cusp field for very large crystals
  • 2.10.10 Boosting crystal weight
  • 2.10.11 Seed chuck
  • 2.10.12 Additional challenges
  • References
  • Further reading
  • 3 Properties of silicon crystals
  • 3.1 Dopants and impurities
  • 3.2 Typical impurity concentrations
  • 3.3 Concentration of dopants and impurities in axial direction
  • 3.4 Resistivity
  • 3.5 Radial variation of impurities and resistivity
  • 3.6 Thermal donors
  • 3.7 Defects in silicon crystals