Handbook of silicon based mems materials and technologies /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2020.
|
Edición: | Third edition. |
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Handbook of Silicon Based MEMS Materials and Technologies
- Copyright Page
- Contents
- List of contributors
- Preface
- Where is silicon based MEMS heading to?
- References
- I. Silicon as MEMS Material
- 1 Properties of silicon
- 1.1 Properties of silicon
- 1.1.1 Crystallography of silicon
- 1.1.1.1 Miller index (hkl) system
- 1.1.1.2 Stereographic projection
- 1.1.2 Defects in silicon lattice
- 1.1.3 Mechanical properties of silicon
- 1.1.4 Electrical properties
- 1.1.4.1 Introduction-dopants and impurities in silicon
- 1.1.4.2 Piezoresistive effect in silicon
- General piezoresistive effect
- Strain
- Stress in anisotropic materials
- Strain effect on resistivity
- Linearity
- Effect of temperature and doping
- Example of a piezoresistive sensor design
- Surface effects
- References
- 2 Czochralski growth of silicon crystals
- 2.1 The Czochralski crystal-growing furnace
- 2.1.1 Crucible
- 2.1.2 Hot zone materials
- 2.1.3 Hot zone structure
- 2.1.4 Gas flow
- 2.2 Stages of growth process
- 2.2.1 Melting
- 2.2.2 Neck
- 2.2.3 Crown
- 2.2.4 Body
- 2.2.5 Tail
- 2.2.6 Shut-off
- 2.3 Selected issues of crystal growth
- 2.3.1 Diameter control
- 2.3.2 Doping
- 2.3.3 Hot zone lifetime
- 2.4 Improved thermal and gas-flow designs
- 2.5 Heat transfer
- 2.6 Melt convection
- 2.6.1 Free convection
- 2.6.2 Crucible rotation
- 2.6.3 Crystal rotation
- 2.6.4 Marangoni convection and gas shear
- 2.7 Magnetic fields
- 2.7.1 Cusp field
- 2.7.2 Transverse field
- 2.7.3 Melt flows under transverse field
- 2.7.4 Time-dependent fields
- 2.8 Hot recharging and continuous feed
- 2.8.1 Hot recharging
- 2.8.2 Charge topping
- 2.8.3 Crucible modifications
- 2.8.4 Continuous Czochralski growth
- 2.9 Heavily n-type doped silicon and constitutional supercooling
- 2.9.1 Constitutional supercooling
- 2.9.2 Melting-point depression
- 2.9.3 Origin of dopant gradient in the melt
- 2.9.4 Path to lower resistivity
- 2.10 Growth of large diameter crystals
- 2.10.1 Neck growth for large crystals
- 2.10.2 Neck extension
- 2.10.3 Additional stresses on neck
- 2.10.4 Dislocations oriented in (100) direction in large diameter crystals
- 2.10.5 Crucible wall temperature
- 2.10.6 Double-layered crucible structure
- 2.10.7 Crucible deformations
- 2.10.8 Intentional devitrification
- 2.10.9 Transverse or cusp field for very large crystals
- 2.10.10 Boosting crystal weight
- 2.10.11 Seed chuck
- 2.10.12 Additional challenges
- References
- Further reading
- 3 Properties of silicon crystals
- 3.1 Dopants and impurities
- 3.2 Typical impurity concentrations
- 3.3 Concentration of dopants and impurities in axial direction
- 3.4 Resistivity
- 3.5 Radial variation of impurities and resistivity
- 3.6 Thermal donors
- 3.7 Defects in silicon crystals