Cargando…

Practical MATLAB modeling with Simulink : programming and simulating ordinary and partial differential equations /

Employ the essential and hands-on tools and functions of the MATLAB's ordinary differential equations (ODEs) and partial differential equations (PDEs) packages, which are explained and demonstrated via interactive examples and case studies. This book contains dozens of simulations and solved pr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Eshkabilov, Sulaymon L. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berkeley, CA : Apress L.P., [2020]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Table of Contents
  • About the Author
  • About the Technical Reviewer
  • Acknowledgments
  • Introduction
  • Part I: Ordinary Differential Equations
  • Chapter 1: Analytical Solutions for ODEs
  • Classifying ODEs
  • Example 1
  • Example 2
  • Example 3
  • Analytical Solutions of ODEs
  • dsolve()
  • Example 4
  • Example 5
  • Example 6
  • Example 7
  • Second-Order ODEs and a System of ODEs
  • Example 8
  • Example 9
  • Example 10
  • Example 11
  • Example 12
  • Example 13
  • Laplace Transforms
  • Example 14
  • laplace/ilaplace
  • Example 15
  • Example 16
  • Example 17
  • Example 18
  • Example 19
  • Example 20
  • Example 21
  • References
  • Chapter 2: Numerical Methods for First-Order ODEs
  • Euler Method
  • Example 1
  • Improved Euler Method
  • Backward Euler Method
  • Example 2
  • Midpoint Rule Method
  • Example 3
  • Ralston Method
  • Runge-Kutta Method
  • Example 4
  • Runge-Kutta-Gill Method
  • Runge-Kutta-Fehlberg Method
  • Adams-Bashforth Method
  • Example 5
  • Milne Method
  • Example 6
  • Taylor Series Method
  • Example 7
  • Adams-Moulton Method
  • Example 8
  • MATLAB's Built-in ODE Solvers
  • Example 9
  • The OPTIONS, ODESET, and ODEPLOT Tools of Solvers
  • Example 10
  • Example 11
  • Simulink Modeling
  • Example 12
  • SIMSET
  • References
  • Chapter 3: Numerical Methods for Second-Order ODEs
  • Euler Method
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Runge-Kutta Method
  • Example 6
  • Example 7
  • Example 8
  • Example 9
  • Example 10
  • Adams-Moulton Method
  • Example 11
  • Example 12
  • Simulink Modeling
  • Example 13
  • Example 14
  • Example 15
  • Example 16
  • Nonzero Starting Initial Conditions
  • Example 17
  • ODEx Solvers
  • Example 18
  • Example 19
  • Example 20
  • Example 21
  • diff()
  • Example 22
  • Chapter 4: Stiff ODEs
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Jacobian Matrix
  • Example 5
  • Example 6
  • Chapter 5: Higher-Order and Coupled ODEs
  • Fourth-Order ODE Problem
  • Robertson Problem
  • Akzo-Nobel Problem
  • HIRES Problem
  • Reference
  • Chapter 6: Implicit ODEs
  • Example 1
  • Example 2
  • Example 3
  • Example 4
  • Example 5
  • Example 6
  • References
  • Chapter 7: Comparative Analysis of ODE Solution Methods
  • Example 1
  • Drill Exercises
  • Exercise 1
  • Exercise 2
  • Exercise 3
  • Exercise 4
  • Exercise 5
  • Exercise 6
  • Exercise 7
  • Exercise 8
  • Exercise 9
  • Exercise 10
  • Exercise 11
  • Exercise 12
  • Exercise 13
  • Part II: Boundary Value Problems in Ordinary Differential Equations
  • Chapter 8: Boundary Value Problems
  • Dirichlet Boundary Condition Problem
  • Example 1
  • Example 2
  • Robin Boundary Condition Problem
  • Example 3
  • Sturm-Liouville Boundary Value Problem
  • Example 4
  • Stiff Boundary Value Problem
  • Example 5
  • References
  • Drill Exercises
  • Exercise 1
  • Exercise 2
  • Exercise 3
  • Exercise 4
  • Exercise 5
  • Exercise 6
  • Exercise 7
  • Exercise 8
  • Exercise 9
  • Exercise 10
  • Exercise 11
  • Exercise 12
  • Exercise 13