Cargando…

Direct methanol fuel cell technology /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Dutta, Kingshuk
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Cambridge, MA : Elsevier, [2020]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Direct Methanol Fuel Cell Technology
  • Copyright Page
  • Contents
  • List of contributors
  • About the editor
  • Foreword
  • Preface
  • Acknowledgments
  • 1 Introduction to direct methanol fuel cells
  • 1.1 Introduction-background and significance
  • 1.2 Working principle
  • 1.3 Components and features
  • 1.4 Drawbacks of direct methanol fuel cells
  • 1.5 Future expectations from direct methanol fuel cells
  • References
  • 2 Nafion-based cation-exchange membranes for direct methanol fuel cells
  • 2.1 Polymer electrolyte membrane in DMFC
  • 2.2 Polymer electrolyte membrane based on perfluorosulfonic acid polymers
  • 2.3 Nafion-based nanocomposites
  • 2.3.1 Preparation methods of nanocomposite membranes
  • 2.3.2 Functionalized metal oxides as nanofillers
  • 2.3.3 Layered-nanostructures (two-dimensional fillers)
  • 2.3.3.1 Smectite clays
  • 2.3.3.2 Layered double hydroxide
  • 2.3.3.3 Graphene oxide
  • 2.4 Conclusion
  • References
  • 3 Non-Nafion-based cation exchange membranes for direct methanol fuel cells
  • 3.1 Introduction
  • 3.2 Direct methanol fuel cells
  • 3.3 Proton exchange membrane
  • 3.3.1 Nafion
  • 3.3.2 Alternative proton exchange membrane material
  • 3.3.2.1 Sulfonated poly(ether ether ketone)
  • 3.3.2.2 Sulfonated poly(ether sulfone) and sulfonated poly(ether ether sulfone)
  • 3.3.2.3 Sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)
  • 3.3.2.4 Biopolymer-based alternative proton exchange membrane
  • 3.4 Summary and future prospects
  • Acknowledgment
  • References
  • 4 Anion-exchange membranes for direct methanol alkaline fuel cells
  • 4.1 Introduction
  • 4.2 Categorization and fabrication of alkaline anion-exchange membranes
  • 4.2.1 Homogeneous membranes
  • 4.2.2 Heterogeneous membranes
  • 4.2.3 Interpenetrating polymer networks
  • 4.2.4 Ionic liquids-based ionomer membranes
  • 4.3 Property requirements of the anion-exchange membrane materials
  • 4.3.1 High ionic conductivity
  • 4.3.2 Efficient barrier for electron conducting
  • 4.3.3 Good chemical stability
  • 4.3.4 Mechanical and thermal robustness
  • 4.3.5 Low fuel permeability
  • 4.3.6 Easy to form membranes
  • 4.3.7 Low cost
  • 4.4 Membrane characterizations
  • 4.4.1 Morphology of membranes
  • 4.4.2 Mechanical and thermal stability
  • 4.5 Performance evaluations of alkaline anion-exchange membranes
  • 4.5.1 Ion-exchange capacity
  • 4.5.2 Alkaline stability
  • 4.5.3 Hydroxide ion conductivity
  • 4.5.4 Water uptake
  • 4.5.5 Swelling ratio
  • 4.5.6 Methanol permeability
  • 4.6 Present research on anion-exchange membranes
  • 4.6.1 Various polymer backbones for increasing anion-exchange membrane alkaline stability and performance
  • 4.6.2 Different cations to increase membrane alkaline stabilities
  • 4.6.2.1 Quaternary ammonium-based membranes
  • 4.6.2.2 Imidazolium-based membranes
  • 4.6.2.3 Phosphonium-based membranes