Direct methanol fuel cell technology /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands ; Cambridge, MA :
Elsevier,
[2020]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Direct Methanol Fuel Cell Technology
- Copyright Page
- Contents
- List of contributors
- About the editor
- Foreword
- Preface
- Acknowledgments
- 1 Introduction to direct methanol fuel cells
- 1.1 Introduction-background and significance
- 1.2 Working principle
- 1.3 Components and features
- 1.4 Drawbacks of direct methanol fuel cells
- 1.5 Future expectations from direct methanol fuel cells
- References
- 2 Nafion-based cation-exchange membranes for direct methanol fuel cells
- 2.1 Polymer electrolyte membrane in DMFC
- 2.2 Polymer electrolyte membrane based on perfluorosulfonic acid polymers
- 2.3 Nafion-based nanocomposites
- 2.3.1 Preparation methods of nanocomposite membranes
- 2.3.2 Functionalized metal oxides as nanofillers
- 2.3.3 Layered-nanostructures (two-dimensional fillers)
- 2.3.3.1 Smectite clays
- 2.3.3.2 Layered double hydroxide
- 2.3.3.3 Graphene oxide
- 2.4 Conclusion
- References
- 3 Non-Nafion-based cation exchange membranes for direct methanol fuel cells
- 3.1 Introduction
- 3.2 Direct methanol fuel cells
- 3.3 Proton exchange membrane
- 3.3.1 Nafion
- 3.3.2 Alternative proton exchange membrane material
- 3.3.2.1 Sulfonated poly(ether ether ketone)
- 3.3.2.2 Sulfonated poly(ether sulfone) and sulfonated poly(ether ether sulfone)
- 3.3.2.3 Sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)
- 3.3.2.4 Biopolymer-based alternative proton exchange membrane
- 3.4 Summary and future prospects
- Acknowledgment
- References
- 4 Anion-exchange membranes for direct methanol alkaline fuel cells
- 4.1 Introduction
- 4.2 Categorization and fabrication of alkaline anion-exchange membranes
- 4.2.1 Homogeneous membranes
- 4.2.2 Heterogeneous membranes
- 4.2.3 Interpenetrating polymer networks
- 4.2.4 Ionic liquids-based ionomer membranes
- 4.3 Property requirements of the anion-exchange membrane materials
- 4.3.1 High ionic conductivity
- 4.3.2 Efficient barrier for electron conducting
- 4.3.3 Good chemical stability
- 4.3.4 Mechanical and thermal robustness
- 4.3.5 Low fuel permeability
- 4.3.6 Easy to form membranes
- 4.3.7 Low cost
- 4.4 Membrane characterizations
- 4.4.1 Morphology of membranes
- 4.4.2 Mechanical and thermal stability
- 4.5 Performance evaluations of alkaline anion-exchange membranes
- 4.5.1 Ion-exchange capacity
- 4.5.2 Alkaline stability
- 4.5.3 Hydroxide ion conductivity
- 4.5.4 Water uptake
- 4.5.5 Swelling ratio
- 4.5.6 Methanol permeability
- 4.6 Present research on anion-exchange membranes
- 4.6.1 Various polymer backbones for increasing anion-exchange membrane alkaline stability and performance
- 4.6.2 Different cations to increase membrane alkaline stabilities
- 4.6.2.1 Quaternary ammonium-based membranes
- 4.6.2.2 Imidazolium-based membranes
- 4.6.2.3 Phosphonium-based membranes