|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
KNOVEL_on1142737072 |
003 |
OCoLC |
005 |
20231027140348.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200304s2020 ne ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d UKMGB
|d UKAHL
|d OCLCF
|d YDXIT
|d EBLCP
|d OCLCQ
|d SOE
|d OCLCO
|d K6U
|d OCLCQ
|
015 |
|
|
|a GBC031072
|2 bnb
|
016 |
7 |
|
|a 019726184
|2 Uk
|
019 |
|
|
|a 1143643033
|a 1287277023
|a 1287875211
|
020 |
|
|
|a 9780128191590
|q (electronic book)
|
020 |
|
|
|a 0128191597
|q (electronic book)
|
020 |
|
|
|z 9780128191583
|
020 |
|
|
|a 0128191589
|
020 |
|
|
|a 9780128191583
|
029 |
1 |
|
|a AU@
|b 000066870384
|
029 |
1 |
|
|a AU@
|b 000068133776
|
029 |
1 |
|
|a UKMGB
|b 019726184
|
035 |
|
|
|a (OCoLC)1142737072
|z (OCoLC)1143643033
|z (OCoLC)1287277023
|z (OCoLC)1287875211
|
037 |
|
|
|a 9780128191590
|b Ingram Content Group
|
050 |
|
4 |
|a TK2933.D57
|b D57 2020
|
082 |
0 |
4 |
|a 621.31/2429
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Direct methanol fuel cell technology /
|c edited by Kingshuk Dutta.
|
264 |
|
1 |
|a Amsterdam, Netherlands ;
|a Cambridge, MA :
|b Elsevier,
|c [2020]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on May 27, 2020).
|
505 |
0 |
|
|a Front Cover -- Direct Methanol Fuel Cell Technology -- Copyright Page -- Contents -- List of contributors -- About the editor -- Foreword -- Preface -- Acknowledgments -- 1 Introduction to direct methanol fuel cells -- 1.1 Introduction-background and significance -- 1.2 Working principle -- 1.3 Components and features -- 1.4 Drawbacks of direct methanol fuel cells -- 1.5 Future expectations from direct methanol fuel cells -- References -- 2 Nafion-based cation-exchange membranes for direct methanol fuel cells -- 2.1 Polymer electrolyte membrane in DMFC
|
505 |
8 |
|
|a 2.2 Polymer electrolyte membrane based on perfluorosulfonic acid polymers -- 2.3 Nafion-based nanocomposites -- 2.3.1 Preparation methods of nanocomposite membranes -- 2.3.2 Functionalized metal oxides as nanofillers -- 2.3.3 Layered-nanostructures (two-dimensional fillers) -- 2.3.3.1 Smectite clays -- 2.3.3.2 Layered double hydroxide -- 2.3.3.3 Graphene oxide -- 2.4 Conclusion -- References -- 3 Non-Nafion-based cation exchange membranes for direct methanol fuel cells -- 3.1 Introduction -- 3.2 Direct methanol fuel cells -- 3.3 Proton exchange membrane -- 3.3.1 Nafion
|
505 |
8 |
|
|a 3.3.2 Alternative proton exchange membrane material -- 3.3.2.1 Sulfonated poly(ether ether ketone) -- 3.3.2.2 Sulfonated poly(ether sulfone) and sulfonated poly(ether ether sulfone) -- 3.3.2.3 Sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) -- 3.3.2.4 Biopolymer-based alternative proton exchange membrane -- 3.4 Summary and future prospects -- Acknowledgment -- References -- 4 Anion-exchange membranes for direct methanol alkaline fuel cells -- 4.1 Introduction -- 4.2 Categorization and fabrication of alkaline anion-exchange membranes -- 4.2.1 Homogeneous membranes
|
505 |
8 |
|
|a 4.2.2 Heterogeneous membranes -- 4.2.3 Interpenetrating polymer networks -- 4.2.4 Ionic liquids-based ionomer membranes -- 4.3 Property requirements of the anion-exchange membrane materials -- 4.3.1 High ionic conductivity -- 4.3.2 Efficient barrier for electron conducting -- 4.3.3 Good chemical stability -- 4.3.4 Mechanical and thermal robustness -- 4.3.5 Low fuel permeability -- 4.3.6 Easy to form membranes -- 4.3.7 Low cost -- 4.4 Membrane characterizations -- 4.4.1 Morphology of membranes -- 4.4.2 Mechanical and thermal stability
|
505 |
8 |
|
|a 4.5 Performance evaluations of alkaline anion-exchange membranes -- 4.5.1 Ion-exchange capacity -- 4.5.2 Alkaline stability -- 4.5.3 Hydroxide ion conductivity -- 4.5.4 Water uptake -- 4.5.5 Swelling ratio -- 4.5.6 Methanol permeability -- 4.6 Present research on anion-exchange membranes -- 4.6.1 Various polymer backbones for increasing anion-exchange membrane alkaline stability and performance -- 4.6.2 Different cations to increase membrane alkaline stabilities -- 4.6.2.1 Quaternary ammonium-based membranes -- 4.6.2.2 Imidazolium-based membranes -- 4.6.2.3 Phosphonium-based membranes
|
590 |
|
|
|a Knovel
|b ACADEMIC - Chemistry & Chemical Engineering
|
650 |
|
0 |
|a Direct methanol fuel cells.
|
650 |
|
0 |
|a Methanol as fuel.
|
650 |
|
6 |
|a Méthanol (Combustible)
|
650 |
|
7 |
|a Direct methanol fuel cells.
|2 fast
|0 (OCoLC)fst01919353
|
650 |
|
7 |
|a Methanol as fuel.
|2 fast
|0 (OCoLC)fst01018601
|
700 |
1 |
|
|a Dutta, Kingshuk.
|
776 |
0 |
8 |
|i Print version:
|t Direct methanol fuel cell technology.
|d Amsterdam, Netherlands ; Cambridge, MA : Elsevier, [2020]
|z 0128191589
|z 9780128191583
|w (OCoLC)1111658417
|
856 |
4 |
0 |
|u https://appknovel.uam.elogim.com/kn/resources/kpDMFCT00K/toc
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35794781
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL6124185
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 301129829
|
994 |
|
|
|a 92
|b IZTAP
|